350 rub
Journal Nonlinear World №2 for 2024 г.
Article in number:
Application of wireless communication in space networks for functional redundancy
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700970-202402-05
UDC: 629.7.017.1
Authors:

A.A. Bruskov1, V.M. Artyushenko2

1, 2 Federal State Budgetary Educational Institution of Higher Education “Technological University
n. a. twice Hero of the Soviet Union, Cosmonaut A.A. Leonov” (Korolev, Moscow region, Russia)
1 bruskov.art@yandex.ru, 2 artuschenko@mail.ru

Abstract:

Problem setting. In accordance with the Federal Space Programme, a great deal of work is currently being done to strengthen and develop the space potential of the Russian Federation. Their aim was to expand and increase the efficiency of the use of outer space in order to meet economic, scientific and other national economic challenges.

Spacecraft and space networks, like engineering objects, degrade and fail over time. In order to meet the requirements of spacecraft, modern methods of improving survivability should be developed and used.

Purpose. Explore the possibility of using wireless communications in space networks for functional backup.

Results. It has been demonstrated that consideration of a simple network of two spacecraft provides a significant improvement in survivability with respect to endogenous failures. It had been shown that increasing the number of spacecraft in the network offered additional benefits in survivability.

Practical significance. The results obtained allow using this experience for other studies of functional redundancy in spacecraft. Studies had shown that increasing the number of spacecraft in the network offered additional reliability advantages.

Pages: 46-53
For citation

Bruskov A.A., Artyushenko V.M. Application of wireless communication in space networks for functional redundancy. Nonlinear World. 2024. V. 22. № 2. P. 46–53. DOI: https://doi.org/10.18127/ j20700970-202402-05 (In Russian)

References
  1. Bruskov A.A. Ocenivanie nadezhnosti sputnikov v zavisimosti ot tipa orbity. Ekonomika. Informatika. 2021. T. 48. № 4. S. 152–164 (In Russian).
  2. Bruskov A.A., Filyaev G.A. Vyyavlenie i analiz prichin otkazov kosmicheskih apparatov. Tezisy dokladov XXII nauch.-tekhn. konf. molodyh uchenyh i specialistov, posvyashchennoj 60-letiyu poleta YU.A. Gagarina, 75-letiyu raketno-kosmicheskoj otrasli i osnovaniya PAO «RKK «Energiya» (8–12 noyabrya 2021 g., naukograd Korolev). PAO «Raketno-kosmicheskaya korporaciya «Energiya» im. S.P. Koroleva». 2021. S. 732–736. 827 s. (In Russian).
  3. Bruskov A.A. Rasprostranenie otkazov vo vzaimozavisimyh mnogourovnevyh setyah. Informacionno-tekhnologicheskij vestnik. 2021. № 2(28). S. 76–90 (In Russian).
  4. Tulup'ev A.L., Nikolenko S.I., Sirotkin A.V. Osnovy teorii bajesovskih setej: Uchebnik. SPb.: SPbGU. 2019. 399 s. Tekst: elektronnyj. URL: https://znanium.com/catalog/product/1243854 (data obrashcheniya: 26.09.2023). Rezhim dostupa: po podpiske (In Russian).
  5. Saleh J.H., Lamassoure E., Hastings D.E., Newman D.J. Flexibility and the Value of On-Orbit Servicing: a New Customer-Centric Perspective». Journal of Spacecraft and Rockets. 2003. V. 40. № 1. P. 279–291.
  6. Perspektivnye tekhnicheskie sredstva i tekhnologii dlya razvitiya kosmicheskoj otrasli: rezul'taty realizacii programmy Soyuznogo gosudarstva «Razrabotka kosmicheskih i nazemnyh sredstv obespecheniya potrebitelej Rossii i Belarusi informaciej distancionnogo zondirovaniya Zemli» («Monitoring-ST»). Redsovet: M.I. Makarov, A.V. Tuzikov [i dr.]. Minsk: Belaruskaya navuka. 2019. 558 s. Tekst: elektronnyj. URL: https://znanium.com/catalog/product/1068016 (data obrashcheniya: 26.09.2023). Rezhim dostupa: po podpiske (In Russian).
  7. Shiryaev A.N. Veroyatnostno-statisticheskie metody v teorii prinyatiya reshenij: Ucheb. posobie. Izd. 2-e. M.: MCNMO. 2014. 144 s. Tekst: elektronnyj. URL: https://znanium.com/catalog/product/958599 (data obrashcheniya: 26.09.2023). Rezhim dostupa: po podpiske (In Russian).
  8. Hiriart T., Saleh J. H. Observations on the Evolution of Satellite Launch Volume and Cyclicality in the Space Industry. Space Policy. 2010. V. 26. № 1. P. 53–60.
  9. Kim S.Y., Castet J.-F., Saleh J.H. Spacecraft Electrical Power Subsystem: Failure Behavior, Reliability, and Multi-State Failure Analyses. Reliability Engineering and System Safety. 2012. V. 98. P. 55–65.
  10. Patraev V.E., SHangina E.A. Nadezhnost' tekhnicheskih sistem kosmicheskih apparatov: Ucheb. posobie. Krasnoyarsk: SFU. 2019. 66 s. Tekst: elektronnyj. Lan': elektronno-bibliotechnaya sistema. Rezhim dostupa: https://e.lanbook.com/book/181593 (Data obrashcheniya: 23.09.2023) (In Russian).
  11. Blinov V.N., Sechenov Yu.N., SHalaj V.V. Malye kosmicheskie apparaty: Spravochnik. Omsk: OmGTU. 2016. 264 s. Tekst: elektronnyj. Lan': elektronno-bibliotechnaya sistema. URL: https://e.lanbook.com/book/149064 (data obrashcheniya: 23.09.2023). Rezhim dostupa: dlya avtoriz. pol'zovatelej (In Russian).
Date of receipt: 27.02.2024
Approved after review: 12.03.2024
Accepted for publication: 23.05.2024