350 rub
Journal Nonlinear World №2 for 2024 г.
Article in number:
Analysis of techniques and technologies for processing trajectory measurements
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700970-202402-03
UDC: 621 324
Authors:

S.G. Vorona1, T.V. Kalinin2, I.N. Shulga3

1–3 A.F. Mozhaisky Military Space Academy (Saint Petersburg, Russia)
1–3 vka@mil.ru

Abstract:

The article discusses the uncertainty factors of processing trajectory measurements.

The purpose of the work: to consider uncertainty factors, to analyze methods for solving poorly formalized problems, as well as the methodology for solving them when processing trajectory measurements using artificial intelligence and expert systems.

An important uncertainty factor in the development of methods for processing trajectory measurements is the fuzziness or ambiguity associated with a subset of natural language. Considering the tasks at various stages of the development of methods for processing trajectory measurements as decision-making tasks, it is advisable to indicate the uncertainty factors that occur in various situations when solving these tasks. These include vagueness, ambiguity, and uncertainty: arising from the description of resources allocated for modeling; arising in the case when the available numerical information does not allow to find solutions by formal methods, but nevertheless, there are such solutions; arising in the early stages of processing, when there are a number of alternative options; arising from the interpretation of the results of computational experiments; arising in the case when, despite the possibility of using precise mathematical relations to solve selection problems, it is convenient for experts to use informal methods that reduce the time required to solve the required tasks. The analysis of methods for solving problems of processing trajectory measurements is carried out. A new methodology is presented, the essence of which is to change the traditional scheme of formalization of the tasks of the subject area of interest to engineers, in cases where the use of the traditional scheme is impossible for some reason.

A methodology for solving poorly formalized problems is presented, as well as expert systems for processing trajectory data.

Pages: 26-39
For citation

Vorona S.G., Kalinin T.V., Shulga I.N. Analysis of techniques and technologies for processing trajectory measurements. Nonlinear World. 2024. V. 22. № 2. P. 26-39. DOI: https://doi.org/10.18127/ j20700970-202402-03 (In Russian)

References
  1. Avremchuk E.F., Vavilov A.A. i dr. Tekhnologiya sistemnogo modelirovaniya. M.: Mashinostroenie. 1988. 520 s. (In Russian).
  2. Alpatov Yu.N. Modelirovanie processov i sistem upravleniya: Ucheb. posobie. SPb.: LAN'. 2018. 140 s. (In Russian).
  3. Glushkov V.M. Obobshchennye dinamicheskie sistemy i processionnoe prognozirovanie. Problemy prikladnoj matematiki i mekhaniki. M.: Nauka. 1971. S. 27−30 (In Russian).
  4. Buslenko N.P. Slozhnye sistemy i imitacionnye modeli. Kibernetika. 1976. № 6. S. 50−59 (In Russian).
  5. Buslenko N.P. Modelirovanie slozhnyh sistem. M.: Nauka. 1978. 399 s. (In Russian).
  6. Belov Yu.A., Didenko V.P., Kozlov N.N. i dr. Matematicheskoe obespechenie slozhnogo eksperimenta. Obrabotka izmerenij pri issledovanii slozhnyh sistem. Kiev: Naukova dumka. 1982. 304 s. (In Russian).
  7. Tocenko V.G., Aleksandrov A.V., Paramonov N.B. Korrektnost', ustojchivost', tochnost' programmnogo obespecheniya. Kiev: Naukova Dumka. 1990 (In Russian).
  8. Vorona S.G., Kalinin T.V. Sintez modeliruyushchih programm na osnove mnogoversionnyh bibliotek komponent. Naukoemkie tekhnologii. 2022. № 7. S. 43−49. DOI: https://doi.org/10.18127/j19998465-202207-04 (In Russian).
  9. Informacionnye tekhnologii i vychislitel'nye sistemy. Obrabotka informacii i analiz dannyh. Programmnaya inzheneriya. Matematicheskoe modelirovanie. Prikladnye aspekty informatiki. Pod red. S.V. Emel'yanova i M. Lenand. 2016. 104 s. (In Russian).
  10. A.s. № 1756900 (RF). Ustrojstvo dlya modelirovaniya processa funkcionirovaniya vosstanavlivaemogo ob"ekta. N.B. Paramonov, A.A. Arhipenko, Yu.M. Zelenchuk, A.N. Lisichenok. 1992 (In Russian).
  11. Patent (RV) № 2011220. Ustrojstvo dlya opredeleniya prodolzhitel'nosti vychislitel'nogo eksperimenta provodimogo na EVM. N.B. Paramonov, A.A. Arhipenko, Yu.M. Zelenchuk, A.N. Lisichenok, K.B. Matveev. 1994 (In Russian).
  12. Sharakshane A.S., Haleckij A.K., Morozov I.A. Ocenka harakteristik slozhnyh avtomatizirovannyh sistem. M.: Mashinostroenie. 1993. 272 s. (In Russian).
  13. Mel'nikov V.A., Pavlov S.V. Razrabotka ekspertnyh sistem obespecheniya letnyh ispytanij raketno-kosmicheskih kompleksov. Dvojnye tekhnologii. 2001. № 2 (In Russian).
  14. Vorona S.G., Lisickij V.V., Stolbov A.V. Neformalizovannye zadachi i metodologiya ih resheniya. Nelinejnyj mir. 2021. T. 19. № 3. S. 18–28 DOI: https://doi.org/10.18127/j20700970-202103-02 (In Russian).
Date of receipt: 06.02.2024
Approved after review: 21.02.2024
Accepted for publication: 23.05.2024