350 rub
Journal Nonlinear World №1 for 2024 г.
Article in number:
Instrumental and methodological support for the assessment and forecasting of knowledge in the pedagogical process
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700970-202401-02
UDC: 004.032.26, 004.89
Authors:

 A.Yu. Cherepkov1, O.V. Druzhinina2

1,2 Bunin Yelets State University (Yelets, Russia)

2 FRС «Computer Science and Control» of Russian Academy of Sciences (Moscow, Russia)

1cherepkov.andrey@mail.ru; 2ovdruzh@mail.ru 

Abstract:

Currently, ensuring the process of assessing students' knowledge is associated with the development of adaptive instrumental and methodological support, which allows you to take into account and adjust the level of training of each student. Machine learning methods and artificial neural networks are widely used in solving problems of modeling and instrumental support of pedagogical processes. It should be noted that effective results can be obtained using multinomial logistic regression based on an integrated approach combining interactive testing and predictive modeling tools. The purpose of the article is to develop instrumental and methodological support for the assessment and forecasting of knowledge in the pedagogical process, taking into account the use of interactive testing algorithms and predictive modeling based on multinomial logistic regression. A software package has been developed to assess students' knowledge and predict academic performance in the educational process, which combines interactive testing tools with predictive modeling using multinomial logistic regression. For the development of the software package, the high-level Python language was used with the involvement of mathematical libraries. The aspects of the development of a support system for the course "Intelligent transport systems" in higher and additional education systems are considered. The obtained results can be used in solving problems of improving intellectual educational environments and in modeling pedagogical processes. In addition, the results can be used to analyze the effectiveness of teaching methods, identify trends and patterns in the educational process, as well as predict student academic performance.

Pages: 15-21

Cherepkov A.Yu., Druzhinina O.V. Instrumental and methodological support for the assessment and forecasting of knowledge in the pedagogical process. Nonlinear World. 2024. V. 22. № 1. P. 15-21. DOI: https://doi.org/10.18127/ j20700970-202401-02 (In Russian)

References
  1. Flah P. Mashinnoe obuchenie. Nauka i iskusstvo postroenija algoritmov, kotorye izvlekajut znanija iz dannyh. M.: DMK Press. 2015 (In Russian).
  2. Orlov A.I. Iskusstvennyj intellekt: ctatisticheskie metody analiza dannyh. M.: Aj Pi Ar Media. 2022 (In Russian).
  3. Nafea I.T. Machine learning in educational technology. Machine Learning-Advanced Techniques and Emerging Applications. 2018. P. 175–183.
  4. Mengqiu C., Yun L., Ying L. Machine learning and modern education. Lecture Notes of the Institute for Computer Sciences (LNICST). 2018. V. 243. P. 41–46.
  5. Pobedinskaja T.V., Zaslavskaja O.Ju. Ispol'zovanie algoritmov mashinnogo obuchenija dlja prognoza uspevaemosti uchashhihsja osnovnoj shkoly. Vestnik MGPU. Ser. Informatika i informatizacija obrazovanija. 2022. № 4(62). S. 75-82 (In Russian).
  6. Grigor'ev A.P., Mamaev V.Ja. O primenenii nejronnyh setej v testirovanii znanij. Nauchnoe priborostroenie. 2016. T. 26. № 4. S. 77–84 (In Russian).
  7. Druzhinina O.V., Karpacheva I.A., Masina O.N., Petrov А.А. Development of an integrated complex of knowledge base and tools of expert systems for assessing knowledge of students in mathematics within the framework of a hybrid intelligent learning environment. International Journal of Education and Information Technologies. 2021. V. 15. P. 122–129.
  8. Petrov A.A., Druzhinina O.V., Masina O.N. Modelirovanie sistem ocenivanija znanij v ramkah gibridnoj intellektual'noj obuchajushhej sredy. Sovremennye informacionnye tehnologii i IT-obrazovanie. 2021. T. 17. № 1. S. 180–189 (In Russian).
  9. Matorin D.D., Cherepkov A.Ju., Zajcev D.S. Nejrosetevye arhitektury dlja modelirovanija obrazovatel'nyh processov. Nejrokomp'jutery: razrabotka, primenenie. 2023. T. 25. № 1. S. 63–71. DOI: https://doi.org/10.18127/j19998554-202301-03 (In Russian).
  10. Cherepkov A.Ju., Matorin D.D., Zajcev D.S. Instrumental'noe obespechenie interaktivnogo testirovanija i prognosticheskogo modelirovanija urovnja znanij studentov s primeneniem nejronnyh setej. Nelinejnyj mir. 2023. T. 21. № 4. S. 39−45. DOI: https://doi.org/10.18127/j20700970-202304-05 (In Russian).
  11. Dushkin R.V. Intellektual'nye transportnye sistemy. M.: DMK Press. 2020 (In Russian).
  12. Raptanova P.A., Miheeva T.I., Chekina E.V. Sistemnyj analiz problem modelirovanija i optimizacii intellektual'nyh transportnyh sistem. Nauchno-tehnicheskij vestnik Povolzh'ja. 2022. № 12. S. 174–176 (In Russian).
Date of receipt: 16.02.2024
Approved after review: 28.02.2024
Accepted for publication: 02.03.2024