350 rub
Journal Nonlinear World №1 for 2024 г.
Article in number:
Analysis of models and development of a software package for assessing the impact of vibration effects of vehicles on urban infrastructure
DOI: https://doi.org/10.18127/j20700970-202401-01
UDC: 519.6, 004.89
Authors:

K.D. Stepanov1, O.V. Druzhinina2, A.A. Petrov3

1,2 Russian University of Transport (MIIT) (Moscow, Russia)

2 FRС «Computer Science and Control» of Russian Academy of Sciences (Moscow, Russia)

3 Bunin Yelets State University (Yelets, Russia)

1 sksteps@mail.ru; 2ovdruzh@mail.ru; 3xeal91@yandex.ru

Abstract:

The direction associated with the construction and research of models that can be used to predict the impact of vibration effects of vehicles on surrounding infrastructure facilities is relevant given the increasing pace of civil engineering in large cities and taking into account the expansion of transport networks. The development of models for evaluating vibration effects and for subsequent use in monitoring and diagnostic systems requires the use of modern methods of nonlinear analysis, discrete mathematics, as well as tools for the development of expert systems and artificial intelligence technologies. The purpose of the article is to obtain the results of the analysis of a complex mathematical model of spatial interactions, the development of algorithmic support and a description of the structure of a software package for assessing the impact of vibration effects of vehicles on urban infrastructure. A model of spatial interactions is proposed to assess the levels of vibration exposure with the construction of a graph of the placement of objects connected by vibration propagation channels and using the mathematical apparatus of modeling hybrid dynamic systems, expert knowledge and fuzzy rules of logical inference. Examples of constructing a model of spatial interactions taking into account three objects of vibrational observation are considered. The VibCalcAlg algorithm has been developed to calculate the states of a three-component model. The structure of the VibCalc software package is described, which includes a block of fuzzy logic, a block of model construction and a block of visualization. The results can be used in solving mathematical modeling problems related to the assessment and prediction of vibration impacts in the field of transport and civil engineering, as well as in solving environmental protection problems. The results are aimed at improving intelligent monitoring systems and decision support systems in the design, construction and operation of transport facilities.

Pages: 5-14
For citation

Stepanov K.D., Druzhinina O.V., Petrov A.A. Analysis of models and development of a software package for assessing the impact of vibration effects of vehicles on urban infrastructure. Nonlinear World. 2024. V. 22. № 1. P. 5-14. DOI: https://doi.org/10.18127/ j20700970-202401-01 (In Russian)

References
  1. Dashevskij M. A., Mondrus V. L., Motorin V. V. Koncepcija vibrozashhity zdanij i sooruzhenij v pole stroitel'nyh normativov RF. Academia. Arhitektura i stroitel'stvo. 2018. №4. S. 109–115 (In Russian).
  2. Kostarev S.A., Mahortyh S.A., Rybak S.A. Razrabotka svodov pravil dlja snizhenija shuma i vibracii ot metropolitena i nazemnyh vidov transporta transporta. Metro i tonneli. 2001. №5. S. 32 (In Russian).
  3. Stepanov K.D., Druzhinina O.V. Razrabotka algoritmicheskogo obespechenija dlja ocenki vlijanija vibracionnyh vozdejstvij transportnyh sredstv na ob’ekty gorodskoj infrastruktury. Nelinejnyj mir. 2023. T. 21. № 4. S. 46-54 DOI: https://doi.org/10.18127/j20700970-202304-06 (In Russian).
  4. GOST 31191.1-2004 (ISO 2631-1:1997). Mezhgosudarstvennyj standart «Vibracija i udar. Izmerenie obshhej vibracii i ocenka ee vozdejstvija na cheloveka». M. 2004 (In Russian).
  5. SanPiN 2.1.2.2645-10. Sanitarno-jepidemiologicheskie trebovanija k uslovijam prozhivanija v zhilyh zdanijah i pomeshhenijah. Sanitarno-jepidemiologicheskie pravila i normativy. M. 2010 (In Russian).
  6. SP 465.1325800.2019 Zdanija i sooruzhenija. Zashhita ot vibracii metropolitena. Pravila proektirovanija. M. 2019 (In Russian).
  7. Druzhinina O.V., Masina O.N. Metody analiza ustojchivosti sistem intellektnogo upravlenija. M.: ID URSS. 2016 (In Russian).
  8. Rybina G.V. Jekspertnye sistemy i instrumental'nye sredstva dlja ih razrabotki: nekotorye itogi. Informacionno-izmeritel'nye i upravljajushhie sistemy. 2023. T. 21. № 2. S. 30–44. DOI: https://doi.org/10.18127/j0700814-202302-05 (In Russian).
  9. Kashevarova G.G., Tonkov Ju.L., Tonkov I.L. Intellektual'naja avtomatizacija inzhenernogo obsledovanija stroitel'nyh ob#ektov. International Journal for Computational Civil and Structural Engineering. 2017. № 13(3). S. 42–57 (In Russian).
  10. Kashevarova G.G., Tonkov Ju.L. Jekspertnaja sistema dlja prakticheskoj diagnostiki stroitel'nyh konstrukcij. Academia. Arhitektura i stroitel'stvo. 2022. № 2. S. 85–91 (In Russian).
  11. Han K.I., Kazhmaganbetova M.A., Zajchenko T.N. Konceptual'naja model' kompleksa programm dlja proektirovanija akustiko-jemissionnoj sistemy diagnostiki. Doklady TUSUR. 2020. T. 23. №4. S. 51–56 (In Russian).
  12. Krjuchkova V.V., Nemirovich-Danchenko M.M. Chislennoe modelirovanie rasprostranenija akusticheskih voln v anizotropnyh sredah. Fizicheskaja mezomehanika. 1999. T. 2. № 1-2. S. 43–48 (In Russian).
  13. Melanich V.M. Opredelenie dinamicheskih harakteristik volnovyh processov v linejnyh reguljarnyh sistemah. Universum: Tehnicheskie nauki: jelektron. nauchn. zhurn. 2015. № 7 (19). URL: http://7universum.com/ru/tech/archi-ve/item/2402. (In Russian).
  14. Melanich V.M., Bojchuk S.V., Lavrinenko Ju.A. Jenergija rasprostranenija akusticheskih voln v balochnyh periodicheskih sistemah. Mezhdunarodnyj nauchno-issledovatel'skij zhurnal. 2016. №6-2 (48). S. 110–114 (In Russian).
  15. Loktev A.A., Druzhinina O.V., Stepanov K.D. Ispol'zovanie obobshhennyh spektrov uprugoj reakcii pri proektirovanii i stroitel'stve zdanij i sooruzhenij transportnoj infrastruktury v uslovijah sejsmicheskih i vibra-cionnyh vozdejstvij. Vnedrenie sovremennyh konstrukcij i peredovyh tehnologij v putevoe hozjajstvo. 2023. T. 19. S. 111–122 (In Russian).
  16. Voskobojnikova G. M., Hajretdinov M. S. Rasprostranenie akusticheskih voln skvoz' pronicaemye prepjatstvija. Interjekspo Geo-Sibir'. 2018. № 4. S. 76–86 (In Russian).
  17. Cukernikov I.E., Shubin I.L., Nevenchannaja T.O., Tihomirov L.A. Prognozirovanie vibracii rel'sovogo transporta v pomeshhenijah zhilyh i obshhestvennyh zdanij. NOISE Theory and Practice. 2023. № 2(33). C. 82–93 (In Russian).
  18. Pastuhova L. G., Alehin V. N., Antipin A. A., Gorodilov S. N., Noskov A. S. Chislennyj analiz vibracionnogo vozdejstvija metropolitena na mnogojetazhnoe zdanie. Akademicheskij vestnik UralNIIProekt RAASN. 2016. № 4(31). S. 73–78 (In Russian)
  19. Takagi T., Sugeno M. Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics. 1985. V. SMC-15. № 1. P. 116–132.
  20. Li J., Yang L., Qu Y., Sexton G. An extended Takagi–Sugeno–Kang inference system (TSK+) with fuzzy interpolation and its rule base generation. Soft Computing. 2018. V. 22. № 10. P. 3155–3170.
  21. Igonina E.V., Masina O.N., Druzhinina O.V. Analiz ustojchivosti dinamicheskih sistem na osnove metodov intellektnogo upravlenija i svojstv linejnyh matrichnyh neravenstv. Elec: Eleckij gos. un-t im. I.A. Bunina. 2020 (In Russian).
Date of receipt: 14.02.2024
Approved after review: 28.02.2024
Accepted for publication: 02.03.2024