K.D. Stepanov1, O.V. Druzhinina2
1,2 Russian University of Transport (MIIT) (Moscow, Russia)
2 FRC «Computer Science and Control» of Russian Academy of Sciences (Moscow, Russia)
1 sksteps@mail.ru; 2 ovdruzh@ipiran.ru
During the operation of transport structures, the surrounding buildings are exposed to vibrational effects, which can lead to negative consequences for both the health of the population and the structural integrity of buildings. On the other hand, large construction projects near transport tunnels can impact the condition of elements and structures of transportation infrastructure. There is both theoretical and applied interest in developing models that can be used to forecast the impact of these vibrational effects, utilizing expert knowledge, current regulations, logical inference rules, and data analysis methods. A pressing challenge is the development of tools for automated monitoring systems and decision-support systems that, in conjunction with existing regulations and numerical analysis of transportation impacts on urban structures (like multi-story buildings), can simulate potential levels of vibrational impact with subsequent forecasting, and conduct a comprehensive impact assessment in a "source–object" system. This approach aims to develop software algorithms for analyzing vibroecological models and predicting transportation-induced vibrational impacts on urban infrastructure, considering a comprehensive "source-object" impact assessment. Features of the causal relationship between the source and the object located within the vibration impact zone are discussed. A model is proposed to evaluate vibration impact levels using expert knowledge, logical deduction rules, and data analysis techniques. A basic algorithm is developed for a comprehensive impact assessment in a "source-object" system, taking into account preliminary evaluations of transportation-induced vibrational impacts on urban structures. The paper describes an approach to creating a fuzzy model for assessing the vibrational impact of transportation on surrounding buildings and characterizing the algorithms and software tools for implementing the model. These results can be utilized for problems related to building and analyzing vibro-ecological models, predicting vibration levels, and refining intelligent monitoring systems and decision-support systems in the design and construction of transportation facilities.
Stepanov K.D., Druzhinina O.V. An approach to the development of algorithmic software for assessing the impact of vehicles vibration impacts on urban infrastructure. Nonlinear World. 2023. V. 21. № 4. P. 46-54. DOI: https://doi.org/10.18127/j20700970-202304-06 (In Russian)
- SN 224/2.1.8.566-96. Federal'nye sanitarnye normy «Proizvodstvennaja vibracija, vibracija v pomeshhenijah zhilyh i obshhestvennyh zdanij». M. 1996 (In Russian).
- GOST 31191.1-2004 (ISO 2631-1:1997). Mezhgosudarstvennyj standart «Vibracija i udar. Izmerenie obshhej vibracii i ocenka ee vozdejstvija na cheloveka». M. 2004 (In Russian).
- SanPiN 2.1.2.2645-10. Sanitarno-jepidemiologicheskie trebovanija k uslovijam prozhivanija v zhilyh zdanijah i pomeshhenijah. Sanitarno-jepidemiologicheskie pravila i normativy. M. 2010 (In Russian).
- SP 120.13330.2012. Metropoliteny. M. 2012 (In Russian).
- SNiP 32-02-2003. Metropoliteny. Stroitel'nye normy i pravila. M. 2003 (In Russian).
- SP 23-105-2004. Ocenka vibracii pri proektirovanii, stroitel'stve i jekspluatacii ob’ektov metropolitena. M. 2004 (In Russian).
- SP 465.1325800.2019 Zdanija i sooruzhenija. Zashhita ot vibracii metropolitena. Pravila proektirovanija. M. 2019 (In Russian).
- Kostarev S.A., Mahortyh S.A., Rybak S.A. Razrabotka svodov pravil dlja snizhenija shuma i vibracii ot metropolitena i nazemnyh vidov transporta. Metro i tonneli. 2001. № 5. S. 32 (In Russian).
- Rybina G.V. Jekspertnye sistemy i instrumental'nye sredstva dlja ih razrabotki: nekotorye itogi. Informacionno-izmeritel'nye i upravljajushhie sistemy. 2023. T. 21. № 2. S. 30–44 (In Russian).
- Kashevarova G.G., Tonkov Ju.L., Tonkov I.L. Intellektual'naja avtomatizacija inzhenernogo obsledovanija stroitel'nyh ob’ektov. International Journal for Computational Civil and Structural Engineering. 2017. № 13(3). S. 42–57 (In Russian).
- Druzhinina O.V., Masina O.N. Metody analiza ustojchivosti sistem intellektnogo upravlenija. M.: Izd. dom URSS. 2016 (In Russian).
- Loktev A.A., Druzhinina O.V., Stepanov K.D. Ispol'zovanie obobshhennyh spektrov uprugoj reakcii pri proektirovanii i stroitel'stve zdanij i sooruzhenij transportnoj infrastruktury v uslovijah sejsmicheskih i vibracionnyh vozdejstvij. Vnedrenie sovremennyh konstrukcij i peredovyh tehnologij v putevoe hozjajstvo. 2023. T. 19. S. 111–122 (In Russian).
- Dashevskij M. A., Mondrus V. L., Motorin V. V. Koncepcija vibrozashhity zdanij i sooruzhenij v pole stroitel'nyh normativov RF. Academia. Arhitektura i stroitel'stvo. 2018. № 4. S. 109–115 (In Russian).
- Cukernikov I.E., Shubin I.L., Nevenchannaja T.O., Tihomirov L.A. Prognozirovanie vibracii rel'sovogo transporta v pomeshhenijah zhilyh i obshhestvennyh zdanij. NOISE Theory and Practice. 2023. № 2(33). C. 82–93 (In Russian).
- Pastuhova L. G., Alehin V. N., Antipin A. A., Gorodilov S. N., Noskov A. S. Chislennyj analiz vibracionnogo vozdejstvija metropolitena na mnogojetazhnoe zdanie. Akademicheskij vestnik UralNIIProekt RAASN. 2016. № 4(31). S. 73–78 (In Russian).
- Rudneva E.A. Analiz rezul'tatov izmerenij urovnej vibracii v zhilyh domah pri dvizhenii poezdov metropolitena, vypolnennyh specialistami FBUZ «Centr gigieny i jepidemiologii v gorode Moskve» v period s 2014-2017 gg. Materialy mezhd. nauchno-praktich. konf. «Problemy jekologicheskoj bezopasnosti, jenergosberezhenie v stroitel'stve i ZhKH». M.–Kavala. 2017. S. 22–26 (In Russian).
- Haritonov S.S., Miller M.R. Analiz opyta naturnyh izmerenij urovnej vibracij, generiruemyh poezdami metropolitena. Aspirantskie chtenija; sb. nauchnyh statej aspirantov IPSS RUT(MIIT). M.: Pero. 2018. S. 96–99 (In Russian).