350 rub
Journal Nonlinear World №2 for 2022 г.
Article in number:
Detection of terahertz electromagnetic waves using the "antiferromagnet – heavy metal" heterostructure
Type of article: short message
DOI: https://doi.org/10.18127/j20700970-202202-04
UDC: 537.622.5
Authors:

E.E. Kozlova1, A.R Safin2, S.A. Nikitov3

1-3 Kotelnikov IRE of RAS (Moscow, Russia)

Abstract:

Problem formulating. At present, there are noticeable difficulties in the development of compact and frequency-tunable generators and detectors of THz radiation operating at room temperatures. Antiferromagnets (AFM) are promising materials for creating such generators and detectors.

Goal. Carry out a theoretical study of THz electromagnetic wave detectors based on an antiferromagnet – heavy metal (HM) heterostructure.

Result. Two models of THz electromagnetic wave detectors based on the AFM-HM heterostructure are proposed. It is shown that the frequency dependence of the constant voltage of the detector has a resonant character with a peak corresponding to the antiferromagnetic resonance frequency.

Practical meaning. AFM-HM heterostructures can become the basis for quadratic resonant detectors of THz radiation.

Pages: 19-23
For citation

Kozlova E.E., Safin A.R, Nikitov S.A. Detection of terahertz electromagnetic waves using the "antiferromagnet – heavy metal" heterostructure. Nonlinear World. 2022. V. 20. № 2. P. 19-23. DOI: https://doi.org/10.18127/j20700970-202202-04 (In Russian)

References
  1. Sirtori C. Bridge for the terahertz gap. Nature. 2002. V. 417. № 6885. P. 132-133.
  2. Kleiner R. Filling the terahertz gap. Science. 2007. V. 318. № 5854. P. 1254–1255.
  3. Gulyaev Y.V., Zilberman P.E., Mikhailov G.M., et al. Generation of terahertz waves by a current in magnetic junctions. JETP Lett. 2014. V. 98. № 11. P. 742–752.
  4. Sizov F., Rogalski A. THz detectors. Progress in quantum electronics. 2010. V. 34. № 5. P. 278-347.
  5. Ferguson B., Zhang X.-C. Materials for terahertz science and technology. Nature Materials. 2002. V. 1. P. 26–33.
  6. Baltz V., Manchon A., Tsoi M., et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 2018. V. 90. № 1. P. 015005.
  7. Satoh T., Cho S.-J., Iida R., et al. Spin oscillations in antiferromagnetic NiO triggered by circularly polarized light. Phys. Rev. Lett. 2010. V. 105. № 7. P. 077402.
  8. Gomonay O., Jungwirth T., Sinova J. High antiferromagnetic domain wall velocity induced by Neel spin-orbit torques. Phys. Rev. Lett. 2016. V. 117. № 1. P. 017202.
  9. Zelezny J., Gao H., Manchon A., et al. Spin-orbit torques in locally and globally noncentrosymmetric crystals: antiferromagnets and ferromagnets. Phys. Rev. B. 2017. V. 95. № 1. P. 014403.
  10. Zvezdin A.K. Dynamics of domail walls in weak ferromagnets. ZhETF Pisma v Redaktsiiu. 1979. V. 29. № 10. P. 605-610.
  11. Safin A., Puliafito V., Carpentieri M., et al. Electrically tunable detector of THz-frequency signals based on an antiferromagnet. Appl. Phys. Lett. 2020. V. 117. № 22. P. 222411.
  12. Vaidya P., Morley S., van Tol J., et al. Subterahertz spin pumping from an insulating antiferromagnet. Science. 2020. V. 368. № 6487. P. 160-165.
Date of receipt: 27.04.2022
Approved after review: 05.05.2022
Accepted for publication: 01.06.2022