E.V. Lisovsky1, O.V. Druzhinina2
1 Kaluga branch of the Bauman Moscow State Technical University (Moscow, Russia)
2 Federal Research Center «Computer Science and Control» of Russian Academy of Sciences (Moscow, Russia)
Many processes of natural science and technology are modeled by nonlinear systems of equations with distributed parameters. The class of models defined using Burgers equations, as well as its generalizations and modifications, is of theoretical and applied interest. It is known that models of this class are used for the mathematical description of the motion of liquid and gas, the phenomena of turbulence, as well as for the mathematical description of waves in a dissipative medium, the processes of nonlinear acoustics and cosmology, and the features of the traffic flow. The development of methods for studying the stability of equilibrium states of this class of models is an urgent direction. One of the effective approaches to the analysis of the stability of such systems is an approach based on both the generalized direct Lyapunov method and mathematical modeling using abstract evolutionary equations. The aim of the paper is to develop an approach to the analysis of the qualitative behavior of solutions for turbulence models in a multiphase medium. The characteristics of the main directions of research of the Burgers equation and some of its generalizations are given. A class of models with distributed parameters is studied based on the method of mathematical modeling using abstract evolutionary equations. An approach to the analysis of the stability of equilibrium states for the modified Burgers model in the case of a two-velocity medium is considered. To obtain sufficient conditionss of stability, the transition to linearized equations and the direct Lyapunov method were used. The results can find application in solving problems of modeling and stability of nonlinear dynamic systems with distributed parameters.
Druzhinina O. V., Lisovsky E. V. Stability analysis of equilibrium states of a nonlinear models with distributed parameters.
Nonlinear World. 2021. V. 19. № 4. 2021. P. 50−59. DOI: https://doi.org/10.18127/j20700970-202104-06 (In Russian)
- Burgers J.M. A mathematical model illustrating the theory of turbulence. Advances in Applied Mechanics. 1948. V. 1. P. 171–199.
- Ladyzhenskaja O.A. Matematicheskie voprosy dinamiki vjazkoj neszhimaemoj zhidkosti. M.: Nauka. 1970.
- Henri D. Geometricheskaja teorija polulinejnyh parabolicheskih uravnenij. M.: Mir. 1985 (In Russian).
- Dzhozef D. Ustojchivost' dvizhenija zhidkosti. M.: Mir. 1981 (In Russian).
- Olver P. Introduction to Partial Differential Equations. Heidelberg, New York: Springer. 2013.
- Bec J., Khanin K. Burgers turbulence. Physics Reports. 2007. V. 447. Is. 1−2. P. 1–66.
- Hopf E. The partial differential equation ut +uux =μuxx . Comm. Pure Appl. Math. 1950. V. 3. P. 201–230.
- Cole J.D. On a quasilinear parabolic equation occuring in aerodynamics// Quart. Appl. Math. 1951. V. 9. P. 225–236.
- Shestakov A.A. Obobshhennyj prjamoj metod Ljapunova dlja sistem s raspredelennymi parametrami. Izd. 2-e, dop. M.: Nauka. 1990; URSS. 2007 (In Russian).
- Karabutov A.A., Lapshin E.A., Rudenko O.V. O vzaimodejstvii svetovogo izluchenija so zvukom v uslovijah pro-javlenija akusticheskoj nelinejnosti. ZhJeTF. 1976. T. 71. № 1(7). S. 111–121 (In Russian).
- Zhuravlev V.M. Metod obobshhennyh podstanovok Koula–Hopfa i novye primery linearizuemyh nelinejnyh jevoljucionnyh uravnenij. Teoreticheskaja i matematicheskaja fizika. 2009. T. 158. № 1. C. 58−71 (In Russian).
- Kudrjavcev A.G., Sapozhnikov O.A. Poluchenie tochnyh reshenij neodnorodnogo uravnenija Bjurgersa s ispol'zova-niem preobrazovanija Darbu. Akusticheskij zhurnal. 2011. T. 57. № 3. S. 313–322 (In Russian).
- Petrovskij S.V. Tochnye reshenija uravnenija Bjurgersa s istochnikom. Zhurnal tehnicheskoj fiziki. 1999. T. 69. Vyp. 8. S. 10–14 (In Russian).
- Samohin A.V. Ob ustojchivosti invariantnyh reshenij uravnenija Bjurgersa na intervale. Nauchnyj vestnik MGTU GA. Serija «Matematika i fizika». 2009. № 140. S. 29–35 (In Russian).
- Nefedov N., Recke L., Schneider K. Existence and asymptotic stability of periodic solutions with an interior layer of reactionadvection-diffusion equations. J. of Math. Analysis and Appl. 2013. V. 405. № 1. P. 90–103.
- Volkov V.T., Nefedov N.N. Asimptoticheskoe reshenie kojefficientnyh obratnyh zadach dlja uravnenija tipa Bjurgersa. ZhVM i MF. 2020. T. 60. № 6. S. 975−984 (In Russian).
- Fahmy E.S., Raslan K.R., Abdusalam H.A. On the exact and numerical solution of the time-delayed Burgers equation. Int. J. Comput. Math. 2008. V. 85. № 11. P. 1637–1648.
- Imomnazarov H.H., Turdiev U.K. Ob odnoj sisteme uravnenij tipa Bjurgersa, voznikajushhej v dvuhzhidkostnoj srede. Interjekspo Geo-Sibir'. 2018. № 4. S. 95−103. (In Russian).
- Zybin K.P., Il'in A.S. Svojstva turbulentnosti, voznikajushhej pod vozdejstviem vneshnej sluchajnoj sily v modeli Bjurgersa. UFN. 2016. T. 186. S. 1349–1353. (In Russian).
- Mazhukin V.I., Samarskij A.A., Orlando Kastel'janos, Shapranov A.V. Metod dinamicheskoj adaptacii dlja nesta-cionarnyh zadach s bol'shimi gradientami. Matematicheskoe modelirovanie. 1993. T. 5. № 4. S. 32–56. (In Russian).
- Sal'nikov N.N., Sirik S.V., Tereshhenko I.A. O postroenii konechnomernoj matematicheskoj modeli processa konvek-cii-diffuzii s ispol'zovaniem metoda Petrova-Galerkina. Problemy upravlenija i informatiki. 2010. № 3. S. 94−109. (In Russian).
- Sirik S.V., Sal'nikov N.N. Chislennoe integrirovanie uravnenija Bjurgersa metodom Petrova−Galerkina s adap-tivnymi vesovymi funkcijami. Problemy upravlenija i informatiki. 2012. № 1. C. 94−110. (In Russian).
- Molchanov A.A., Sirik S.V., Sal'nikov N.N. Vybor vesovyh funkcij v metode Petrova−Galerkina dlja integrirovanija dvumernyh nelinejnyh uravnenij tipa Bjurgersa. Matematichnі mashini і sistemi. 2012. № 2. S. 136−144. (In Russian).
- V'junnik N.M., Zaharov Ju.N., Kirichenko A.A., Lobasenko B.A., Ragulin V.V. Razrabotka modeli dvizhenija zhidkosti s peremennymi plotnost'ju i vjazkost'ju v ustrojstve dlja otvoda diffuzionnogo sloja. Vestnik KemGU. 2015. № 4−3(64). S. 128–134. (In Russian).
- Zajcev A.V., Kudashov V.N. Primenenie uravnenija Bjurgersa v kachestve model'nogo uravnenija dinamiki vjazkoj sredy v kanale. Nauchnyj zhurnal NIU ITMO. Serija «Processy i apparaty pishhevyh proizvodstv». 2014. № 2. [Jelektronnyj resurs]: http://www.processes.ihbt.ifmo.ru. (In Russian).
- Shestakov A.A. Obobshhennyj prjamoj metod Ljapunova dlja abstraktnyh poludinamicheskih processov. I, II, III. Differencial'nye uravnenija. 1986. T. 22. № 9. S. 1475–1490; 1987. T. 23. № 3. S. 371–387; 1987. T. 23. № 6. S. 923–936. (In Russian).
- Shestakov A.A. Prjamoj metod Ljapunova kak metod lokalizacii funkcijami Ljapunova predel'nyh mnozhestv neav-tonomnyh dinamicheskih processov. Funkcii Ljapunova i ih primenenie. Novosibirsk: Nauka. 1987. S. 14–48. (In Russian).
- Shestakov A.A. A survey on the theory of localization of limit sts in dynamical processes by using Lyapunov functionals. Colloquia Math. Soc. Janos Bolyai 47. Differential Equations: Qualitative theory. Szeged (Hungary). 1984. P. 997–1028.