350 rub
Journal Nonlinear World №2 for 2017 г.
Article in number:
The application of fiber-optical temperature sensor for measuring of the magnetocaloric effect in pulsed magnetic fields
Authors:
A.P. Kamantsev - Junior Research Scientist, Kotelnikov IRE RAS (Moscow) E-mail: kama@cplire.ru A.V. Mashirov - Research Scientist, Kotelnikov IRE RAS (Moscow) V.V. Koledov - Dr.Sc. (Phys.-Math.), Leading Research Scientist, Kotelnikov IRE RAS (Moscow) L.N. Butvina - Ph.D. (Phys.-Math.), Senior Research Scientist, Fiber Optics Research Center of RAS
Abstract:
We present a new technique for experimental study of kinetics of phase transitions (PTs) and direct measurement of the magnetocaloric effect (MCE) in pulsed magnetic fields by using the fast response temperature probe with infrared fiber optical (IRFO) sensor. As demonstration of the new technique, the results are presented of MCE measurements for Gd near Curie point: ΔTad = 21.3 K under pulsed magnetic field µ0H = 12.7 T; and inverse MCE for Fe48Rh52 sample at initial temperature 305.1 K: ΔTad = 4,5 K under pulsed magnetic field µ0H = 8.5 T. The energy losses on magnetization near the 1st order PT were calculated from direct measurements for Fe48Rh52 sample: W = 45 J/kg.
Pages: 63-66
References

 

  1. Butvina L.N., Sereda O.V., Dianov E.M., Lichkova N.V., Zagorodnev V.N. Single-mode microstructured optical fiber for the middle infrared // Optics letters. 2007. № 32. R. 334.
  2. Planes A., Manosa L., Acet M. Magnetocaloric effect and its relation to shape-memory properties inferromagnetic Heusler alloys // J. Phys.: Condens. Matter. 2009. № 21. R. 233201.
  3. Gschneidner K.A. (Jr.), Pecharsky V.K. Thirty years of near room temperature magnetic cooling: Where we are today and future prospects // Journal of Refrigeration. 2008. № 31. R. 945.
  4. Kamantsev A., Koledov V., Mashirov A., Dilmieva E., Shavrov V., Cwik J., Tereshina I. Fundamental physical restrictions on power of magnetocaloric refrigeration based on gadolinium working body // Proceedings of the 6th IIF-IIR International Conference on Magnetic Refrigeration (THERMAG VI). 2014. 89 r.
  5. Kamantsev A.P., Koledov V.V., Shavrov V.G., Tereshina I.S. Thermodynamic and relaxation processes near Curie point in gadolinium // Solid State Phenomena. 2014. № 215. R. 113.
  6. Kamantsev A.P., Koledov V.V., Mashirov A.V., Dilmieva E.T., Shavrov V.G., Cwik J., Tereshina I.S. Magnetocaloric effect of gadolinium at adiabatic and quasi-isothermal conditions in high magnetic fields // Solid State Phenomena. 2015. R. 233-234, 216.
  7. Annaorazov M.P., Asatryan K.A., Myalikgulyev G., Nikitin S.A., Tishin A.M., Tyurin A.L. Alloys of the Fe-Rh system as a new class of working material for magnetic refrigerators // Cryogenics. 1992. V. 32. № 10. R. 867.
  8. Kamantsev A.P., Koledov V.V., Mashirov A.V., Dilmieva E.T., Shavrov V.G., Cwik J., Tereshina I.S., Lyange M.V.,. Khovaylo V.V, Porcari J., Topic M. Properties of metamagnetic alloy Fe48Rh52 in high magnetic fields // Bulletin of the Russian Academy of Sciences. Physics. 2015. № 79. R. 1086.
  9. Aliev A.M., Batdalov A.B., Khanov L.N., Koledov V.V., Shavrov V.G., Tereshina I.S., Taskaev S.V. Magnetocaloric effect in some magnetic materials in alternating magnetic fields up to 22 Hz // Journal of Alloys and Compounds. 2016. R. 676, 601.
  10. Dan-kov S.Yu., Tishin A.M., Pecharsky V.K., Gschneidner K.A. (Jr.) Magnetic phase transitions and the magnetothermal properties of gadolinium // Phys. Rev. B. 1998. № 57. R. 3478.
  11. Dilmieva E.T., Kamantsev A.P., Koledov V.V., Mashirov A.V., Shavrov V.G., Cwik J., Tereshina I.S. Experimental simulation of a magnetic refrigeration cycle in high magnetic fields // Physics of the Solid State. 2016. № 58. R. 81.