350 rub
Journal Nonlinear World №5 for 2016 г.
Article in number:
Simulation methods of oscillator circuits under weak excitation for circuit simulators
Authors:
M.M. Gourary - Ph.D. (Eng.), Senior Research Scientist, Institute for Design Problems in Microelectronics of Russian Academy of Sciences (Moscow). E-mail: gourary@ippm.ru M.M. Zharov - Ph.D. (Eng.), leading Research Scientist, Institute for Design Problems in Microelectronics of Russian Academy of Sciences (Moscow). E-mail: zarov@ippm.ru S.G. Rusakov - Dr.Sc. (Eng.), Corresponding Member of RAS, Chief Research Scientist, Institute for Design Problems in Microelectronics of Russian Academy of Sciences (Moscow). E-mail: rusakov@ippm.ru S.L. Ulyanov - Dr.Sc. (Eng.), Head of Department, Institute for Design Problems in Microelectronics of Russian Academy of Sciences (Moscow). E-mail: ulyas@ippm.ru
Abstract:
The important problem of oscillator design is estimation of the impact of undesirable influence from other components of integrated circuits on oscillator behavior. A brief mathematical description of the principles of analysis of different modes of the oscillator behavior under weak excitation is given in the paper. The description is based on the harmonic balance (HB) technique. The set of methods providing the analysis of arbitrary excited oscillators is presented. The methods are based on transformations of small-signal Harmonic Balance equations aimed to the elimination of the matrix singularity at the zero frequency offset. Approaches to the solutions of a number of practically important problems arising in the analysis of excited oscillators are obtained. The problems include phase noise evaluation, injection locking conditions, evaluation of the spectrum of a pulled oscillator, the analysis of mutually locked oscillators. The features of forming the model equations for small-signal analysis are considered for modes of phase modulation, injection pulling, injection locking. The algebraic system is derived for oscillator phases and common locking frequency of mutually locked oscillators. The smoothed form of phase macromodel is given. The general case is presented when the excitation frequency is close to the rational fraction of the oscillator fundamental.
Pages: 42-52
References

 

  1. Adler R. A study of locking phenomena in oscillators // Proc. of the IRE and Waves and Electrons. June 1946. № 34. P. 351-357.
  2. Leeson D. A simple model of feedback oscillator noise spectrum // Proc. IEEE. 1966. V. 54. P. 329-330.
  3. Rusakov S.G. Modelirovanie nelinejjnykh radiochastotnykh skhem v sistemakh avtomatizacii skhemotekhnicheskogo proektirovanija // Avtomatizacija proektirovanija. 997. № 2. S. 2-8.
  4. Aktualnye problemy modelirovanija v sistemakh avtomatizacii skhemotekhnicheskogo proektirovanija/ pod red. A.L. Stempkovskogo. M.: Nauka. 2003. 430 s.
  5. Ngoya E., Suarez A., Sommet R., Quer R. Steady-state analysis of free or forced oscillators by harmonic balance and stability investigation of periodic and quasi-periodic regimes // Int. J. of Microwave and Millimeter-Wave Comp. Aided Eng. 1995. V. 5. № 3. P. 210-223.
  6. Gourary M.M., Ulyanov S., Zharov M., Rusakov S., Gullapalli K.K., Mulvaney B.J. Simulation of high-Q oscillators // in Proc. of IEEE/ACM Int. Conf. on Computer-Aided Design. 1998. P. 162-169.
  7. Demir A., Mehrotra A., Roychowdhury J. Phase Noise in Oscillators: A Unifying Theory and Numerical Methods for Characteri­zation // IEEE Trans. on Circuits and Systems. I. 2000. V. 47. P. 655-674.
  8. Gourary M.M., Rusakov S.G., Ulyanov S.L., Zharov M.M., et al. New Numerical Technique for Cyclostationary Noise Analysis of Oscillators // Proc. of the 37th European Microwave Conf., Munich. 2007. P. 1173-1176.
  9. Gourary M.M., Rusakov S.G., Ulyanov S.L., Zharov M.M., Mulvaney B.J. Evaluation of Oscillator Phase and Frequency Transfer Functions // in Scientific Computing in Electrical Engineering SCEE 2008. Book series: Mathematics in Industry. 2010. V. 14. P 183-190.
  10. Gourary M.M., Rusakov S.G., Ulyanov S.L., Zharov M.M., Mulvaney B.J. Analysis of oscillator injection locking by harmonic balance method // Proc. of Design Automation and Test in Europe Conf. 2008. P. 318-323.
  11. Gurarijj M.M., Uljanov S.L. Analiz uslovijj sinkhronizacii avtogeneratora // Izvestija VUZov. Ser. EHlektronika. 2009. № 5(79). S. 57-65.
  12. Gourary M.M., Rusakov S.G., Ulyanov S.L., Zharov M.M. Mutual injection locking of oscillators under parasitic couplings // in Scientific Computing in Electrical Engineering, Book series: Mathematics in Industry. 2012. V. 16. P. 303-312.
  13. Gourary M.M., Rusakov S.G., Ulyanov S.L., Zharov M.M., Mulvaney B.J., Gullapalli K.K. Smoothed Form of Nonlinear Phase Macromodel for Oscillators // Proc. IEEE/ACM Int. Conf. Comp. Aided Design. 2008. P. 807-814.
  14. Bogoljubov, N.N., Mitropolskijj JU.A. Asimptoticheskie metody v teorii nelinejjnykh kolebanijj. Izd. 2-e ispr. i dop. M.: Gos. izd-vo fiz.-mat. lit. 1958. 408 s.
  15. Gourary M.M., Rusakov S.G., Ulyanov S.L., Zharov M.M. Injection Locking/Pulling Analysis of Oscillators Under Fractional Excitation Frequency // 20th European Conference on Circuit Theory and Design ECCTD 2011, Linkoping, Sweden.  August 2011.  P. 545-548.
  16. Gurarijj M.M., Rusakov S.G., Uljanov S.L. Razrabotka metodov analiza rezhima vzaimnojj sinkhronizacii avtogeneratorov v integralnykh skhemakh // Sb. trudov «Problemy razrabotki perspektivnykh mikro- i nanoehlektronnykh sistem» / pod red. akad. RAN A.L. Stempkovskogo. M.: IPPM RAN. 2010. S. 138-143.
  17. Narayan O., Roychowdhury J. Analysing Oscillators Using Multitime PDEs // IEEE Trans. Circ. Syst. I. 2003. V. 50. № 7. P. 894-903.