350 rub
Journal Nonlinear World №4 for 2016 г.
Article in number:
The model of silica glass and optical fibres failure
Authors:
A.A. Dyachenko - Ph.D. (Eng.), Senior Research Scientist, V.A. Kotelnikov-s Institute of Radio Engineering and Electronics of RAS. E-mail: arhip36@bk.ru O.E. Shushpanov - Dr.Sc. (Phys.-Math.), Professor, Chief Research Scientist, V.A. Kotelnikov-s Institute of Radio Engineering and Electronics of RAS. E-mail: oeshome@mail.ru
Abstract:
The new model of silica fibres failure is developed. The model is based on the exponential dependence of microcracks speed growth on tension loads. It is shown that speed growth of micro cracks in liquid water consists of three components: elementary speed caused by chemical interaction of bonds Si-O with water molecules, with OH- ions and ions. Thermodynamical magnitudes defining speed growth of the micro cracks are found. Speed growth of micro cracks in wet environment consists of one component determined by interaction of SiO bonds with water molecules. The equations for lifetime and dynamic strength of optical fibres giving the possibility for research of failure process under different temperatures, humidity and acidity of external medium are given. The processes influencing on the strength of fibres are exposed and analyzed. Phenomena of the surface microcracks healing by coating materials is investigated. It is shown that cracks can spread both in glass and in healing materials. Influence of process of glass dissolving in water as well as the degradation process of elasticity modulus of the healing materials on the optical fibres lifetime and their dynamic strength are taken into consideration. The calculated data of lifetime and dynamic strength of optical fibres are well agreed with the experimental data, received in a wide interval of tension load value and external space conditions.
Pages: 34-54
References

 

  1. Sedov L.I. Mekhanika sploshnojj sredy. T. 2. M.: Nauka. 1973. 584 s.
  2. Bershtejjn V.A. Mekhano-gidroliticheskie processy i prochnost tverdykh tel. L.: Nauka. 1987. S. 50-57.
  3. ZHurkov S.N. Dilatonnyjj mekhanizm prochnosti tverdykh tel // V sb. «Fizika prochnosti i plastichnosti». L.: Nauka. 1986.
  4. Regel V.R., Slucker A.I., Tomashevskijj EH.E. Kineticheskaja priroda prochnosti tverdykh tel. M.: Nauka. 1974.
  5. Charles R.J. Static fatigue of glass. I // J. Applied Physics. 1958. V. 29. № 11. R. 1549-1560.
  6. Wiederhorn S.M. Mechanisms of subcritical crack growth in glass // Fracture mechanism of ceramics. New York. 1974. R. 613-643.
  7. Michalske T.A., Bunker B.C. Slow fracture model based on strained silicate structures // Applied Physics. 1984. V. 56. № 10.
  8. Brodskijj A.I. Fizicheskaja khimija. CH. II. M.: Goskhimizdat. 1948.
  9. Glesston S., Lejjdler K., EHjjring G. Teorija absoljutnykh skorostejj reakcijj. M.: Gos. izd-vo inostr. lit-ry. 1948.
  10. Charles R.J., Hillig W.B. The kinetics of glass failure by stress corrosion // Proc. Symposium sur la resistance mechanique du verre at le moyens d l-ameliorer. Union Science Continentale du Verre. Charleroi, Belgium. 1962. R. 1-17.
  11. Spravochnik po koehfficientam intensivnosti naprjazhenijj. V 2-kh tomakh / pod red. JU. Murakami / per. s angl. Pod red. R.V. Goldshtejjna i N.A. Makhutova. M.: Mir. 1990.
  12. Shiue Y.S., Matthewson M.J. Apparent activation energy of fused silica optical fibers in static fatigue in aqueous environments // Journal of the European Ceramic Society. 2002. V. 22. R. 2325-2332.
  13. Hibino J., Sakaguchi S., Tajima Y. Crack growth in silica glass under dynamic loading // J. Am. Ceram. Soc. 1984. V. 67. № 1. R. 64-68.
  14. Koike A., Tomozawa M. Fictive temperature dependence of subcritical crack growth rate of normal glass and anomalous glass // Journal of Non-Crystalline Solids. 2006. № 352. R. 5522-5530.
  15. Mikio Muraoka, Hiroyuki Abe Subcritical crack growth in silica optical fibers in a wide range of crack velocities // J. Am. Ceram. Soc. 1979. № 1. R. 51-57.
  16. Wiederhorn S.M., Bolz L.H. Stress corrosion and static fatigue of glass // J. Amer. Ceram. Soc. 1970. V. 53. № 10. R. 543-548.
  17. Wiederhorn S.M., Johnson H. Effect of electrolyte pH on crack propagation in glass // J. Amer. Ceram. Soc. 1973. V. 56. № 4. R. 192-197.
  18. Shigeki Sakaguchi, Yozo Sawaki, Yoshishige Abe, Tadashi Kawasaki Delayed failure in silica glass // J. of Materials Science. V. 17. R. 2878-2886.
  19. Shigeki Sakaguchi and Takao Kimura Influence of temperature and humidity on dynamic fatigue of optical fibers // J. Am. Ceram. Soc. 1981. V. 64. № 5. R. 259-262.
  20. Boguslavskijj I., Silvestrovich S. Bronirovannoe steklo // Tekhnika molodezhi. 1960. № 4. S. 9.
  21. Wondraczek L., Dittmar A., Oelagrdt C., Celarie F., Ciccoti M., Marliere C. Real-time observation of a non-equilibrium liquid condensate confined at tensile crack tips in oxide glasses // J. Am. Ceram. Soc. 2006. № 89. R. 746-749.
  22. Wiederhorn S.M. Influence of water vapor on crack propagation in soda-lime-glass // J. Am. Ceram. Soc. 1967. V. 50. № 8. R. 407-417.