350 rub
Journal Nonlinear World №5 for 2015 г.
Article in number:
Prompt method of radio-frequency electromagnetic fields monitoring within indoor and near building areas with geospatial technologies implication
Authors:
P.N. Zakharov - Ph. D. (Phys.-Math.), Associate Professor, Faculty of Physics, Lomonosov Moscow State University. E-mail: zakharov1@mail.ru A.F. Korolev - Ph. D. (Phys.-Math.), Associate Professor, Faculty of Physics, Lomonosov Moscow State University. E-mail: korolev_phys@mail.ru A.A. Potapov - Dr. Sc. (Eng.), Ph. D. (Phys.-Math.), Leading Research Scientist, Faculty of Physics, Lomonosov Moscow State University. E-mail: al_ptv@mail.ru A.V. Turchaninov - Senior Research Scientist, Faculty of Physics, Lomonosov Moscow State University. E-mail: aturmail54@mail.ru
Abstract:
The article covers prompt method of indoor and near-building areas radio-frequency electromagnetic fields (RF EMF) monitoring with geospatial technologies implication. The method is based upon in-motion measurements along predetermined network of tracks created using geometrically correct geo-referenced building\'s spatial model. The described method provides experimental spatially distributed radiomonitoring in GNSS denied areas, effective usage of all kinds of geometrically correct geo-referenced building\'s spatial models (ranged from the most basic models to highly detailed ones), high rate of experimental data acquiring and opportunity for RF EMF generated by all kinds of indoor and broadcasting remote sources complex analysis within one extent of joint geospatial model. Experimental approbation of the introduced method for indoor monitoring of seven FM signals from four various remote broadcasting centers shows good measurement result\'s repeatability both in amplitude and spatial domain: RF EMF spatial variations localization consistency was within 1-3 meters, statistical parameters variations of independent measurements sets for certain frequency were within 3 dB range and average values of correlation coefficients of independent measurements sets (acquired during different directions movement along a track at fixed frequency) were 0,66 for raw and 0,85 for averaged data. Experimental approbation of the introduced method for indoor monitoring of RF EMF from in-building transmitter (laboratory signal generator) at frequencies 150, 500 and 1500 MHz also shown considerable effectiveness: good measurement result\'s repeatability both in amplitude and spatial domain, low variability of statistical parameters variations of independent measurements sets (within 1-2 dB range). Also high consistency in maximum RF EMF areas localization with 1-3 m spreading was established at all measured frequencies. Significant promptness of the described method due to in-motion measurements implementation allows seamless adaptation of expe-rimental procedure for RF EMF sources with variable output power by coordination of experimental measurements and power output schedule in time domain or by regular long-term monitoring with subsequent amplitude variations analysis with geographic information systems usage. The experimental results prove wide field of practical applications for the developed method of radio-frequency electromagnetic fields monitoring within indoor and near building areas including: RF EMF ecological safety assessment of quarters and whole buildings and wireless systems coverage area determination.
Pages: 18-26
References

 

  1. Vorobeva T.A., Krasnushkin A.V., Potapov A.A. Izuchenie i kartografirovanie fizicheskogo zagrjaznenija gorodskojj sredy // Vestnik Moskovskogo universiteta. Serija 5. Geografija. 2005. № 4. S. 35−39.
  2. Bornkessel S., Schubert M., Wuschek M., Schmidt P. Determination of the general public exposure around GSM and UMTS base stations // Radiation Protection Dosimetry. 2007. № 1. P. 40−47.
  3. Cooper T.G., Mann S.M., Khalid M., Blackwell R.P. Exposure of the general public to radio waves near microcell and picocell base stations for mobile telecommunications. Didcot: National Radiation Protection Board. 2004. 55 p. URL: http://webarchive.
  4. nationalarchives.gov.uk/20140714084352/http://www.hpa.org.uk/webc/HPAwebFile/HPAweb_C/1194947319169 (dataobrashhenija: 15.04.2015).
  5. Aerts S., Deschrijver D., Verloock L., Dhaene T., Martens L., Joseph W. Assessment of outdoor radiofrequency electromagnetic field exposure through hot spot localization using kriging-based sequential sampling // Environmental Research. 2013. № 126. P. 184−191.
  6. Urbinello D., Huss A., Beekhuizen J., Vermeulen R., Röösli M. Use of portable exposure meters for comparing mobile phone base station radiation in different types of areas in the cities of Basel and Amsterdam // Science of the Total Environment. 2014. № 468−469. P. 1028−1033.
  7. Potapov A.A.Geoinformacionnye sistemy v ehkologicheskom monitoringe ehlektromagnitnykh polejj radiochastotnogo diapazona // Geoinformatika. 2011. № 1. S. 17−25.
  8. Mann S. Assessing personal exposures to environmental radio frequency electromagnetic fields // Comptes Rendus Physique. 2010. № 9−10. P. 541−555.
  9. Baltrenas P., Buckus R. Measurements and analysis of the electromagnetic fields of mobile communication antennas // Measurement. 2013. № 46. P. 3942−3949.
  10. Beekhuizen J., Vermeulen R., Eijsden M., Strien R., Bürgi A., Loomans E., Guxens M., Kromhout H., Huss A. Modelling indoor electromagnetic fields (EMF) from mobile phone base stations for epidemiological studies // Environment International. 2014. № 67. P. 22−26.
  11. Potapov A.A.Sovershenstvovanie metodologii ocenki ehlektromagnitnojj bezopasnosti pomeshhenijj s privlecheniem geoinformacionnykh tekhnologijj // Nelinejjnyjj mir. 2010. T. 8. № 10. S. 629−636.
  12. Sukhorukov A.P., Babushkin A.K., Dudov R.A., Zakharov P.N., Kozar A.V., Korolev A.F., Potapov A.A., Pukhov E.A., Turchaninov A.V. Rasprostranenie radiovoln v obitaemykh sredakh: fizicheskie, informacionnye i ehkologicheskie aspekty // Radiotekhnika. 2009. № 5. S. 40−49.