350 rub
Journal Nonlinear World №1 for 2015 г.
Article in number:
Stochastic domains evolution at states switching of one-dimensional system containing randomly located defects
Authors:
B.V. Petukhov - Dr. Sc. (Phys.-Math.), Leading Researcher, Shubnikov Institute of Crystallography of Russian Academy of Sciences (Moscow). E-mail: petukhov@ns.crys.ras.ru
Abstract:
In many cases, state switching in extended quasi-one-dimensional materials occurs by thermally activated or quantum mechanical formation of new state nuclei and their subse¬quent growth along the system. Examples of such transformations are magnetization switching of nanowires in spintronics and single-chain magnets, dislocation escape from the crystalline relief valley, DNA molecule replication, polymer relaxation, curling of graphene sheet edges into nanotubes, and many other processes in physics, chemistry, and biology. Due to the development of the technology of the use of carbon nanotubes for growing quasi-one-dimensional crystals in them, the number of objects for studying the kinetics of phase transformations in such systems sharply increased. Crystallization is a speed-limiting process for the erasing and rewriting of data storage devices based on phase-change materials, and it is therefore necessary to have a thorough understanding of the phase transformation processes in them. In the present contribution the statistical Kolmogorov-Johnson-Mehl theory of crystallization is generalized taking into account the effect of obstacles creating delays for the propagation of new phase boundaries, as applied to quasi-one-dimensional nanosystems. An equation describing the state switching kinetics has been derived considering the stochastic nature of new phase nuclei formation in time and the random distribution of obstacles in space. The dependence of the transformation kinetics and the domain size evolution on the obstacle density is calculated, and the results are compared with Monte Carlo simulations of the model.
Pages: 45-54
References

 

  1. Dodd R., EHjjlbek Dzh., Gibbon Dzh., Morris KH. Solitony i nelinejjnye volnovye uravnenija. M.: Mir.1988. 694 s.
  2. Vachaspati T. Kinks and Domain Walls. An Introduction to Classical and Quantum Solitons. Cambridge, N.Y., Melbourne, Madrid, Cape Town, Singapore, São Paulo: Cambridge University Press. 2006.
  3. Nanomagnetism and spintronics / Ed. T. Shinjo. Amsterdam: Elsevier. 2009.
  4. Lukov V.V., Kogan V.A., SHHerbakov I.N., Popov L.D., Levchenkov S.I. Molekuljarnye magnetiki: ehksperimentalno-teoreti­cheskie osnovy dizajjna magnitnykh materialov budushhego // Vestnik JUzhnogo nauchnogo centra RAN. 2011. T. 7. № 1. C. 3-41.
  5. Petukhov B.V.Dislocation Dynamics in a Crystal Lattice (Peierls-Nabarro) Relief // Crystal Lattice Defects and Dislocation Dynamics / Ed. R.A. Vardanian.Huntington, N.Y.: Nova Science Publisher. 2000. P. 71-115.
  6. Jun S., Zhang H., Bechhoefer J. Nucleation and growth in one dimension. I. The generalized Kolmogorov-Johnson-Mehl-Avrami model // Phys. Rev. E. 2005. V. 71. 011908-8.
  7. Kraikivski P., Lipowsky R., Kierfeld J. Activated dynamics of semiflexible polymers on structured substrates // Eur. Phys. J. E. 2005. V. 16. № 3. P. 319-340.
  8. Ivanovskaya V.V., Zobelli A., Wagner P., Heggie M.I., Briddon P.R., Rayson M.J., Ewels C.P. Low-energy termination of graphene edges via the formation of narrow nanotubes // Phys. Rev. Lett. 2011. V. 107. 065502-4.
  9. Roth S., Carroll D. One-Dimensional Metals. Conjugated Polymers, Organic Crystals, Carbon Nanotubes. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2004.
  10. Zakaljukin R.M., Demjanec L.N., Kiselev N.A., Kumskov A.S., Kislov M.B., Krestinin A.V., KHatchison D.L. Odnomernye monokristally SnF2vo vnutrennikh kanalakh odnoslojjnykh uglerodnykh nanotrubok. I. Poluchenie i pervichnaja kharakterizacija // Kristallografija. 2010. T. 55. № 3. S. 545-550.
  11. Warner J.H., Plant S.R., Young N.P., Porfyrakis K., Kirkland A.I., Briggs G.A.D. Atomic scale growth dynamics of nanocrystals within carbon nanotubes // ACS Nano. 2011. V. 5. № 2. P. 1410-1417.
  12. Glauber R.J. Time-dependent statistics of the ising model // J. Math. Phys. 1963. V. 4. № 2.P. 294-307.
  13. Kolmogorov A.N. K statisticheskojj teorii kristallizacii metallov // Izv. ANSSSR. Otd. mat. nauk. 1937. № 3. S. 355-359.
  14. Johnson A., Mehl P.A. Reaction Kinetics in Processes of Nucleation and Growth // Trans. Am. Inst. Min., Metall. 1939. V. 135. P. 416-458 [reprinted in: Metallurg. and Mater. Trans. A. 2010. V. 41A. № 11.P. 2711-2775].
  15. Belenkijj V.Z. Geometriko-verojatnostnye modeli kristallizacii. M.: Nauka. 1980. 88 s.
  16. Krapivskijj P.L., Redner S., Ben-Naim EH. Kineticheskijj vzgljad na statisticheskuju fiziku. M.: Nauchnyjjmir. 2012. 616 s.
  17. Zhou G.-F. Materials aspects in phase change optical recording // Mater. Sci. Eng. A. 2001. V. 304-306. P. 73-80.
  18. Pini M.G., Rettori A., Bogani L., Lascialfari A., Mariani M., Caneschi A., Sessoli R. Finite-size effects on the dynamic susceptibility of CoPhOMe single-chain molecular magnets in presence of a static magnetic field // Phys. Rev. B. 2011. V. 84. 094444-15.
  19. Petukhov B.V. Vlijanie defektov na kinetiku fazovogo prevrashhenija odnomernojj sistemy: modificirovannaja teorija Kolmogorova-Mela-Dzhonsona // ZHEHTF. 2012. T. 141. № 6. S. 1130-1136.
  20. Petukhov B.V. Rol defektov pri kinkovom mekhanizme perekljuchenija sostojanijj // FTT. 2012. T. 54. № 12.S. 2366-2371.
  21. Petukhov B.V. EHvoljucija razmerov domenov pri perekljuchenii sostojanijj odnomernojj sistemy s defektami // Fizika i tekhnika poluprovodnikov. 2013. T. 47. № 5.S. 613-620.
  22. Feller V. Vvedenie v teoriju verojatnostejj i ee prilozhenija. T. 2. M.: Mir. 1964. 752 s.
  23. Landau D.P., Binder K. A Guide to Monte Carlo Simulations in Statistical Physics. Cambridge, N.Y., Melbourne, Madrid, Cape Town, Singapore, São Paulo: Cambridge University Press. 2005.
  24. Spravochnik po specialnym funkcijam / pod red. M. Abramovic, I. Stigan. M.: Nauka. 1979. 832 s.
  25. Bhargava A., Williamson A., Vijay M, Jain I.P. Effect of tellurium substitution on the crystallization kinetics of amorphous selenium // J. Non-Cryst. Solids. 1995. V. 192-193. P. 494-497.