350 rub
Journal Nonlinear World №9 for 2014 г.
Article in number:
Research of nonlinear algorithms of processing of signals in coherent multiposition fiberoptical systems of transfer
Keywords:
fiberoptical systems of transfer
nonlinear phase filters
phase crossmodulation
coherent reception
Authors:
V.A.Burdin - Dr. Sc. (Eng.), Professor, vice rector for science and innovations, FGOBU VPO of PGUTI. E-mail: burdin@psati.ru
I.V.Grigorov - Ph. D. (Eng.), Associate Professor, dean of faculty of the correspondence obtscheniye, FGOBU VPO of PGUTI. E-mail: igor_grogorov@mail.ru
I.V.Grigorov - Ph. D. (Eng.), Associate Professor, dean of faculty of the correspondence obtscheniye, FGOBU VPO of PGUTI. E-mail: igor_grogorov@mail.ru
Abstract:
In article questions of use of the Shryodinger's nonlinear filters (NFSh) for electronic compensation of nonlinear interaction of signals in high-speed fiber-optical systems of transfer, including, and in systems are discussed with spectral consolidation (WDM-systems). In such systems interaction of signals is caused by joint action of chromatic dispersion and phase self-modulation (FSM) If the system of transfer is multichannel, using some optical bearing, except phase self-modulation, the phase krossmodulyation (FKM) has essential impact on signaling.
The Shryodinger's Nonlinear Filter (SNF) is an electric equivalent of the generalized nonlinear equation of Shryodinger describing process of distribution of signals on optical fibers in a nonlinear mode. In WDM systems the system of such equations therefore NFSh for them is multichannel is considered. The operator describing such filter, in that specific case, if in the line isn't considered attenuation and strengthening, belongs to the class of operators with unitary nonlinearity. For such operators the return operator is complex interfaced with initial. The corresponding return filter realized similarly in a digital form, it is offered to use for restoration of the signals which have passed the line of transfer, for the purpose of reduction of influence of the specified dispersive and nonlinear effects, as in single-channel, and multichannel systems of transfer. Such filters are called as restoring (VNFSh).
Besides, in article the problem of optimization of the demodulator of optical signals as a whole by criterion of a minimum of average probability of wrong reception is solved. The algorithm and the block diagram of the demodulator are given. Further algorithm modification taking into account casual nature of the polarizing modovy dispersion (PMD) is considered.
Results of modeling and the analysis of a noise stability of reception of signals of four-position phase-shift keying (PSK4) with application of the considered algorithm are given. It is shown that the algorithm with VNFSh gives a prize (some decibel), in comparison with a linear method of electronic compensation of dispersion.
Pages: 46-56
References
- Klovskij D.D. Teoriya e'lektricheskoj svyazi. M.: Radiotexnika. 2009. 647 s.
- Le Nguyen Binh. Optical Fiber Communications Systems: Theory and Practice with MATLAB® and Simulink® Models (Optics and Photonics). CRC Press. 2010. 560 p.
- Burdin V.A., Grigorov I.V.Sposob kompensaczii dispersii volokonno-opticheskoj linii peredachi. // Patent RF № 2321174. MPK NO4 V 10/18. Prior.10.08.2006. Opubl.27.03.2008.
- Merker T., Hahnenkamp N., Meissner P.Comparison of PMD-compensation techniques at 10 Gbit/s using an optical first-order compensator and electrical transversal filter. Elsevier Optics Communications 182 (2000) 135−141. August 2000.
- Grigorov I.V., SHirokov S.M. Primenenie teorii nelinejny'x volnovy'x proczessov v radiotexnike i telekommunikacziyax. M.: Radio i svyaz'. 2006. 351 s.
- Grigorov I.V.Obrabotka signalov na osnove modeli v vide obobshhyonnogo nelinejnogo uravneniya SHryodingera. «Infokommunikaczionny'e texnologii». 2010. № 1. S. 22−24.
- Agraval G. Nelinejnaya volokonnaya optika. M.: Mir. 1996. 328 s.
- Maslov V.P. Kompleksny'e markovskie czepi i kontinual'ny'j integral Fejnmana. M.: Nauka. 1976. 192 s.
- SHirokov S.M. Razlichimost' impul'sov chastichno kogerentnogo izlucheniya v nelinejnom opticheskom kanale // Komp'yuternaya optika. 1993. № 13. S. 59−64.
- Gurkin N.V., Nanij O.E., Treshhikov V.N., Ubajdullaev R.R. Proizvoditel'nost' kogerentny'x DWDM sistem s kanal'noj skorost'yu 100 Gbit/s. T. 1. Vestnik svyazi. № 1. S. 39−40.
- Turitsyn S.K., Gabitov I. Variational approach to optical pulse propagation in dispersion compensated transmission systems // Opt.Commun. 1998. V. 151. P. 117−135.
- Nikolaev B.I. Posledovatel'naya peredacha diskretny'x soobshhenij po neprery'vny'm kanalam s pamyat'yu. M.: Radio i svyaz'. 1988. 264 s.
- Ventczel' E.S. Teoriya veroyatnostej. M.: Nauka. 1969. 576 s.
- SHirokov S.M. Priblizhenny'e parametricheskie modeli dinamiki samovozdejstviya impul'sov v nelinejny'x opticheskix sredax s modovoj dispersiej // Komp'yuternaya optika. 1995. № 14−15. CH. 2. S. 117−125.
- Fink L.M. Teoriya peredachi diskretny'x soobshhenij. M.: Sov.radio. 1970. 727 s.