350 rub
Journal Nonlinear World №4 for 2014 г.
Article in number:
Fractal image coding
Keywords:
existential quantifier
distortion metrics
approximated fixed point
existential quantifier
contractivity
fixed basis vector
block affine transformation
Authors:
E.V. Egorova - Ph. D. (Eng.), MIREA
Abstract:
Fractal compression methods or image coding based on fractal iterative transformations are considered. Deterministic fractals of extremely high visual complexity have very low information content generated by a simple recursive algorithm. Comparison of different methods showed that the blocks with sharp boundaries fractal coding is better than vector quantization, but the blocks are identical in the case of regions of texture. Fractal image compression describes the fact that real-world objects and their images can be modeled by deterministic fractal objects - a set of two-dimensional attractors and affine transformations. Considered as compared adaptive block coding is considered.
Pages: 39-42
References
- Anishchenko V. S., Vadivasova T. Ye., Astakhov V. V. Nelineynaya dinamika khaoticheskikh i stokhasticheskikh sistem. Saratov: SGU. 1999. S. 368.
- Morozov A. D., Dragunov T. N. Voykova S. A., Malysheva O. V. Invariantnye mnozhestva dinamicheskikh sistem v Windows. M.: Editorial URSS. 1998. S. 240.
- Prett U. K. Tsifrovaya obrabotka izobrazheniy: V 2 t.: Per. s angl. / pod red. D. S. Lebedeva. M.: Mir. 1982. T. 1.S. 312. T. 2. S. 480.
- Barnsley M. F., Iterated Function Systems and Global Construction of Fractals // Proc. R. Soc. (London). 1985. V. A399. 1817. P. 243-275.
- Barnsley M. F., Ervin V., Hardin D., Lancaster J., Solution of an Inverse Problem for Fractals and Other Sets // Proc. Nat. Acad. Sci. USA. 1986. V. 83.7. P. 1975-1977.
- Beaumont J. M. Image Data Compression Using Fractal Techniques // ET Technol. J. 1991. V. 9. № 4. P. 93-109.
- Jacquin A. E. Fractal Image Coding: A Review // Proc. IEEE. 1993. V. 81. № 10. P. 1451-1465.
- Danford H., Shvarts Dzh. Lineynye operatory: Per. s angl. M.: Mir. 1962. T.1 S.895. 1996. T.2. S.1063. 1974. T.3. S.661.
- Jacobs E. W., Fisher Y., Boss R. D. Image Compression: A Study of the Iterated Transform Method // Signal Process. 1992. V. 29. P. 251-263.
- Jacquin A. E. Image Coding Based on a Fractal Theory of Iterated Contractive Image Transformations // IEEE Trans. 1992. V. 1. P. 18-30.
- Lepsoy S., Oien G.E., Ramstad T.A. Attractor Image Compression with a Fast Non-Iterative Decoding Algorithm // Proc. ICASSP-93. 1993. P. 337-340.
- Monro D. M., Dudbridge F. Fractal Approximation of Image Blocks // Proc. ICASSP-92. 1992. V. III. P. 485-488.
- Monro D. M., Dudbridge F. Fractal Block Coding of Images // Electron. Lett. 1992. V. 28, 11. P. 1053-1055.
- Monro D. M. Generalised Fractal Transforms: Complexity Issues // Proc. Data Compression Conf 1993. P. 254-261.
- Potapov A. A. Fraktaly v radiofizike i radiolokatsii: Topologiya vyborki. Izd. 2-e. M.: Universitetskaya kniga. 2005. S. 848.
- Oien G. E., Lepsoy S., Ramstad T. A. An Inner Product Space Approach to Image Coding by Contractive Transforms // Proc. ICASSP-91. 1991. P. 2773-2776.
- Rinaldo R., Zakhor A. Fractal Approximation of Images // Proc. Data Compression Conf. 1993. P. 451.
- Vaisey J., Gersho A. Variable Block-Size Image Coding // Proc. ICASSP-87. 1987. P. 1051-1054.
- Linde Y., Buzo A., Gray R. M. An Algorithm for Vector Quantizer Design // IEEE Trans. 1980. V. COM-28. № 1. P. 84-95.
- Uelsted S. Fraktaly i veyvlety dlya szhatiya izobrazheniy v deystvii: Per. s angl. M.: Triumf. 2003. C. 320.