350 rub
Journal Nonlinear World №3 for 2014 г.
Article in number:
Dynamics of the chaotic state of IMPATT microwave oscillator
Authors:
Yu.I. Alekseev - Dr.Sc. (Eng.), Professor, Department of Antennas and Radio Transmitting Equipments, Southern Federal University, Taganrog, Russia
I.V. Semernick - Postgraduate Student, Department of Antennas and Radio Transmitting Equipments, Southern Federal University, Taganrog, Russia. E-mail: ione7nick@yandex.ru
A.V. Demyanenko - Ph.D. (Eng.), Associate Professor, Department of Antennas and Radio Transmitting Equipments, Southern Federal University, Taganrog, Russia
Abstract:
The same dynamic system can demonstrate various scenarios of transition to chaos which correspond to different parameters areas and driving direction. Furthermore, observable bifurcation sequences can be complex combined. Identification of the scenario of real dynamic system transition to chaos allow hereinafter develop recommendations to the system parameters and external force optimization for the purpose of radio-technical characteristics optimization - frequency band and output power level - of workable noise oscillation source for specific applied radio engineering tasks. The purpose of this article is to research of chaotic state of the microwave IMPATT oscillator under presence of own reflected signal. It is shown that the system transits to chaotic mode unevenly by means of single bifurcation. At the same time, phenomenon of intermittence regular and irregular oscillation is observed, which is the most noticeable under transition from chaos to multifrequency mode. It is necessary to notice that in τ parameter area the chaotic region was preceded by a sector of synchronization system by the own reflected signal. The validity of theoretic research results is confirmed by the correspondence behavior of mathematical model, which is used in simulation, in deterministic mode with experimental data obtained from real devices research.
Pages: 40-44
References

  1. Tager A.S., Val'd-Perlov V.M. Lavinno-proletnye diody i ikh primenenie v tekhnike SVCh. M.: Sovetskoe radio. 1968.
  2. Mun F. Khaoticheskie kolebaniya: Vvodnyj kurs dlya nauchnykh rabotnikov i inzhenerov: per. s angl. M.: Mir. 1990.
  3. Anishhenko V.S., Vadivasova T.E. Lekcii po nelinejnoj dinamike. Ucheb. posobie dlya vuzov. M. - Izhevsk: NIC «Regulyarnaya i khaoticheskaya dinamika». 2011.
  4. Shuster G. Determinirovannyj khaos. Vvedenie. M.: Mir. 1988.
  5. Alekseev Yu., Dem'yanenko A. Detektirovanie opticheskikh kolebanij lavinno-proletnymi diodami. Monografiya. Saar-brücken, Deutschland: LAP LAMBERT Academic Publishing GmbH & Co. KG.
  6. Semernik I.V., Alekseev Yu.I., Dem'yanenko A.V. Model' dlya teoreticheskogo analiza rezhimov raboty generatora na lavinno-proletnom diode s uchetom sobstvennogo otrazhennogo signala // Izvestiya vysshikh uchebnykh zavedenij. Fizika. 2013. T. 56. № 8/2. S. 329-331.
  7. Alekseev Yu.I., Dem'yanenko A.V., Semernik I.V. Issledovanie khaoticheskikh sostoyanij avtokolebatel'nykh sistem. Generator na lavinno-proletnom diode. Monografiya. Saarbrücken, Deutschland: LAP LAMBERT Academic Publishing GmbH & Co. KG. 2013.
  8. Semernik I.V., Alekseev Yu.I., Dem'yanenko A.V. Issledovanie vozmozhnosti vozbuzhdeniya khaoticheskikh kolebanij v generatore na lavinno-proletnom diode putem vvedeniya neodnorodnosti v vykhodnuyu liniyu peredachi // Izvestiya vysshikh uchebnykh zavedenij. Fizika. 2013. T. 56. № 8/2. S. 337-339.