350 rub
Journal Nonlinear World №3 for 2014 г.
Article in number:
The numeric solution of the heat conduction problem in investigation of IR-signatures of special monitoring objects
Authors:
I.N. Ishchuk - Dr.Sc. (Eng.), Associate Professor, Head of 12 Department, Military Educational Research Centre of Air Force «Air Force Academy named after professor N.E. Zhukovsky and Y.A. Gagarin» (Voronezh). E-mail: boerby@rambler.ru
V.V. Mikhailov - Dr.Sc. (Eng.), Professor, Head of Hydrometeorological Faculty, Military Educational Research Centre of Air Force «Air Force Academy named after professor N.E. Zhukovsky and Y.A. Gagarin» (Voronezh)
A.V. Parfiriev - Postgraduate Student of 12 Department, Military Educational Research Centre of Air Force «Air Force Academy named after professor N.E. Zhukovsky and Y.A. Gagarin» (Voronezh)
Abstract:
The article discusses the shortcomings of existing methods of detecting objects of special monitoring (SM) in the IR-range. We present a numerical solution of heat conduction problem, allowing to take into account meteorological conditions and the nonlinear dependence of conductivity on temperature, in order to increase the efficiency of the formation of research facilities SM signatures in the IR-range of wavelengths for example, consider the problem of heat distribution in a rod of unit length. For the numerical solution of the equation with boundary and initial conditions were used implicit schemes. Nonlinearity of the mixed boundary-value problem is the dependence of the thermal conductivity of the rod on its temperature. However, mathematical methods for calculating the thermal conductivity of solid material available, its magnitude and temperature dependence are determined experimentally. To account for the nonlinear effects was used Lagrange interpolation polynomial. The numerical solution was used for data processing field experiment for quartz sand. The numerical solution of the problem of thermal conductivity allows considering the nonlinear dependence of conductivity on temperature, as well as the influence of external environmental factors and thus increasing the effectiveness of the study of the formation of SM signatures objects in the IR-range.
Pages: 20-23
References

  1. Samarskij A.A., Mikhajlov A.P. Matematicheskoe modelirovanie: Idei. Metody. Primery. M.: Fizmatlit. 2002.
  2. Kartashov E.M. Analiticheskie metody v teorii teploprovodnosti tverdykh tel. M.: Vysshaya shkola. 2001.
  3. Farlou S. Uravneniya s chastnymi proizvodnymi dlya nauchnykh rabotnikov i inzhenerov. M.: Mir. 1985.
  4. Ishhuk I.N., Gromov Yu.Yu., Samkharadze T.G., Fesenk A.I. Obrabotka izobrazhenij v infrakrasnom diapazone voln na osnove identifikacii teplovykh svojstv skrytykh podpoverkhnostnykh ob"ektov // Inzhenernaya fizika. 2009. № 2. S. 3-11.
  5. Matveev M.G., Mikhajlov V.V., SemenovM.E., Sirota E.A. Model' analiza dinamiki vektornogo meteorologicheskogo processa // Vestnik VGU. Ser. «Sistemnyj analiz i informacionnye tekhnologii». 2013. № 1. S. 89-94.