350 rub
Journal Nonlinear World №11 for 2014 г.
Article in number:
Simulation modeling of a nonlinear oscillatorсonsidering elastic colli-sions
Authors:
V.V. Narozhnov - Junior Research Scientist, Department of Mathematical Physics of Fractals, Research Institute of Applied Mathematics and Automation, Kabardino-Balkarian Scientific Center RAS (Nalchik). E-mail: narojnov.victor@gmail.com
Abstract:
Purpose of the present work is to develop a simulation model of a nonlinear oscillator at presence of elastic collisions. To perform this task an interactive tool for modeling, simulation and analysis of dynamical systems Simulink was selected, which is part of the software package MATLAB. This tool allows build graphical block diagrams, simulate dynamic systems, investigate performance systems, debug and improve them. In this paper the differential equation of a nonlinear oscillator in the presence of elastic collisions was derived, as well as algorithm of simulation of nonlinear oscillator using the program Simulink was developed and realized. Using the developed algorithm in the work a computational experiment was performed, which showed that on the oscillations given by an external force damped oscillations at a higher frequency are superimposed, which correspond to elastic collisions of the oscillator. The practical realization of the developed simulation model allows to create a fundamentally new technique for non-destructive diagnostics of viscoelastic properties of solids (metals, alloys, polymers, etc.).
Pages: 30-34
References

 

  1. Bykov V.A., Rjabokon V.N. Instrumenty nanotekhnologii: sostojanie i perspektivy razvitija // Uspekhi sovremennojj radioehlektroniki. 2004. № 5-6. S. 123-128.
  2. Nebolsin V.A., Dolgachev A.A., Dunaev A.I., Zavalishin M.A. Ob obrazovanii makroskopicheskikh vystupov na poverkhnosti prizmaticheskikh nitevidnykh kristallov kremnija // Naukoemkie tekhnologii. 2010. № 12. S. 54-57.
  3. Achildiev V.M., Basarab M.A., Gruzevich JU.K., Lunin B.S., Matveev V.A., Soldatenkov V.A. Mikromekhanicheskijj vibracionnyjj giroskop-akselerometr na osnove ehffekta avtoehlektronnojj ehmissii // Informacionno-izmeritelnye i upravljajushhie sistemy. 2010. № 8. S. 9-15.
  4. Rekhviashvili S.SH., Narozhnov V.V. Nelinejjnaja dinamika i akusticheskie signaly pri uprugikh soudarenijakh zonda s poverkh­nostju tverdogo tela // Izv. vuzov. Serija PND. 2013. T. 21. № 6. S. 49-57.
  5. Morozov V.K., Rogachev G.N. Modelirovanie informacionnykh i dinamicheskikh sistem : ucheb. posobie dlja stud. vyssh. ucheb. zavedenijj. M.: Izdatelskijj centr «Akademija». 2011. 384 s.
  6. Landau L.D., Lifshic E.M. Teorija uprugosti. M.: Nauka. 1987. 246 s.
  7. Dzhonson K. Mekhanika kontaktnogo vzaimodejjstvija. M.: Mir. 1989. 510 s.
  8. Magnus K. Kolebanija: Vvedenie v issledovanie kolebatelnykh sistem / Per. s nem. M.: Mir. 1982. 304 s.