350 rub
Journal Nonlinear World №11 for 2013 г.
Article in number:
Calculation of precipitation of fabric railroad from the effects of dynamic loads with the ray method
Authors:
А.А. Loktev - Dr.Sc.(Phys.-Math.), Associate Professor, Head of Department of Structural Mechanics, Machinery and Equipment, Moscow State University of Railway Transport (MIIT). E-mail: aaloktev@yandex.ru
А.V. Zaletdinov - Post-graduate student, Moscow Financial and Law University (MFLA). E-mail: azaletdinov@gmail.com
А.V. Sycheva - Senior Lecturer, Moscow State University of Railway Transport (MIIT). E-mail: avsycheva@gmail.com
Abstract:
Ways to increase the length of transport communications between the regions leads to the formation of new requirements to the means of transportation and directly to the roads on which these funds are transferred. In our country, traditionally the most important are railway services that are used by large number of individuals and businesses. The performance of the railway track to a great extent depend on the roadbed and largely determined by the strength of under ballast base, the general and local stability of slopes, the stability of soft soil at the base of embankments and engineering-geological factors terrain. Consideration of these factors leads researchers to follow the path complexity of mathematical models of objects in the system soil - the mound - permanent way. Given the high cost of strengthening the base path is necessary to create techniques that allow for the effects of terrain engineering and geological factors to calculate the stability of the railway track to make an accurate assessment of his condition. Developing such a methodology and use it to obtain the specific characteristics of the road condition under dynamic loads is the focus of this work.
Pages: 821-826
References

  1. Thomas T.Y. Plastic Flow and Fracture in Solids. N.Y. - London: Acad. Press. 1961.
  2. Malekzadeh K., Khalili M.R., Mittal R.K. Response of composite sandwich panels with transversely flexible core to low-velocity transverse impact: A new dynamic model // International Journal of Impact Engineering. 2007. V. 34. R. 522-543.
  3. Rossikhin Yu.A., Shitikova M.V. A ray method of solving problems connected with a shock interaction // Acta Mechanica. 1994. V. 102. № 1-4. R. 103-121.
  4. Loktev A.A. Udarnoe vzaimodejstvie tverdogo tela i uprugoj ortotropnoj plastinki // Mexanika kompoziczionny'x materialov i konstrukczij. 2005. T. 11. 
  5. № 4. S. 478-492.
  6. Biryukov D.G., Kadomczev I.G. Uprugoplasticheskij neosesimmetrichny'j udar parabolicheskogo tela po sfericheskoj obolochke // PMTF. 2005. T. 46. № 1. S. 181-186.
  7. Loktev A.A. Dinamicheskij kontakt udarnika i uprugoj ortotropnoj plastinki pri nalichii rasprostranyayushhixsya termouprugix voln // Prikladnaya matematika i mexanika. 2008. T. 72. V. 4. S. 652-658.
  8. Loktev A.A. Udar vyazkouprugogo tela po uprugoj izotropnoj plastinke // Mexanika kompoziczionny'x materialov i konstrukczij. 2007. T. 13. № 3. C. 170-178.
  9. Olsson R., Donadon M.V., Falzon B.G. Delamination threshold load for dynamic impact on plates // International Journal of Solids and Structures. 2006. V. 43. R. 3124-3141.
  10. Achenbach J.D., Reddy D.P. Note on wave propagation in linear viscoelastic media // Z. Angew. Math. Phys. 1967. V. 18. P. 141-144.
  11. Al-Mousawi M.M. On experimental studies of longitudinal and flexural wave propagations: an annotated bibliography // Applied Mechanics Reviews. 1986. V. 39. № 6. P. 853-864.
  12. Karagiozova D. Dynamic buckling of elastic-plastic square tubes under axial impact - I: stress wave propagation phenomenon // International Journal of Impact Engineering. 2004. V. 30. P. 143-166.
  13. Kukudzjanov V.N. Investigation of shock wave structure in elasto-visco-plastic bar using the asymptotic method // Archive of Mechanics. 1981. V. 33. 
  14. № 5. P. 739-751.