350 rub
Journal Nonlinear World №10 for 2013 г.
Article in number:
Numerical solving of plane contact problem for elastic solids with functionally graded coatings
Authors:
I.S. Belashova - Ph.D. (Phis-Math.), Assiciate Professor, Senior Research Scientist, Institute of Geotechnical Mechanics named by N.S. Polyakov (Ukraine, Dnepropetrovsk)
A.A. Bobylov - Dr.Sc. (Eng.), Professor, Moscow Aviation Institute (National Research University)
Abstract:
The nonlinear contact problem of pressing a hard punch in an elastic body with functionally graded coating is considered. At statement of contact problem the actual contact areas are in advance unknown, on surfaces of possible contact conditions of ideal unilateral contact are set. The variational formulation of the problem in the form of a variational inequality and an extreme problem are obtained. The discretization of the problem is made by the finite element method on an unstructured triangular finite element grid refined near a contact zone. The conjugate gradients method is used for numerical solving of the problem. The carried-out test calculations showed that the occurrence of tensile stress zone in functionally graded coating under pressing a hard punch is possible.
Pages: 689-695
References

  1. My'shkin N.K., Petrokovecz M.I. Trenie, smazka, iznos. Fizicheskie osnovy' i texnicheskie prilozheniya tribologii. M.: FIZMATLIT. 2007. 368 s.
  2. Sovremennaya tribologiya: Itogi i perspektivy' / otv. red. K.F. Frolov. M.: Izd-vo LKI. 2008. 480 s.
  3. Shashkov D.P., Belashova I.S. Poverxnostnoe uprochnenie instrumental'ny'x stalej. M.: Texpoligrafczentr. 2004. 376 s.
  4. Belashova I.S. Shashkov D.P. Poverxnostnoe uprochnenie instrumental'ny'x stalej s primeneniem lazernogo nagreva. M.: Texpoligrafczentr. 2004. 147 s.
  5. Mexanika kontaktny'x vzaimodejstvij. M.: FIZMATLIT. 2001. 672 s.
  6. Goryacheva I.G. Mexanika frikczionnogo vzaimodejstviya. M.: Nauka. 2001. 478 s.
  7. Butenko V.I. Osnovy' nanotribologii. Taganrog: Izd-vo TTI JuFU. 2010. 275 s.
  8. Analiticheskie resheniya smeshanny'x osesimmetrichny'x zadach dlya funkczional'no-gradientny'x sred. M.: FIZMATLIT. 2011. 192 s.
  9. Bajokki K., Kapelo A. Variaczionny'e i kvazivariaczionny'e neravenstva. Prilozheniya k zadacham so svobodnoj graniczej: per. s angl. / pod red. V.I. Agoshkova. M.: Nauka. Gl. red. fiz.-mat. lit. 1988. 448 s.
  10. Kravchuk A.S. Variaczionny'e i kvazivariaczionny'e neravenstva v mexanike. M.: MGAPI. 1997. 340 s.
  11. Dyuvo G., Lions Zh.-L. Neravenstva v mexanike i fizike. M.: Nauka. 1980. 383 s.
  12. Panagiotopulos P. Neravenstva v mexanike i ix prilozheniya. Vy'pukly'e i nevy'pukly'e funkczionaly' e'nergii. M.: Mir. 1989. 496 s.
  13. Glovinski R., Lions Zh.-L., Tremol'er R. Chislennoe issledovanie variaczionny'x neravenstv. M.: Mir. 1979. 574 s.
  14. Pissaneczki S. Texnologiya razrezhenny'x matricz. M.: Mir. 1988. 410 s.
  15. Boby'lev A.A. Ob odnom variante chislennogo resheniya kontaktny'x zadach teorii uprugosti // Reshenie prikladny'x zadach matematicheskoj fiziki i diskretnoj matematiki: sb. nauch. tr. Dnepropetrovsk: DGU. 1987. S. 23-29.
  16. Boby'lev A.A. K voprosu ob opredelenii kontaktny'x napryazhenij metodom konechny'x e'lementov // Metody' resheniya prikladny'x zadach mexaniki deformiruemogo tverdogo tela: sb. nauch. tr. Dnepropetrovsk: DGU. 1989. S. 8-11.