350 rub
Journal Nonlinear World №1 for 2013 г.
Article in number:
Classification of image distortion type in task of noreference image quality assessment
Authors:
V.V. Khryashchev, A.L. Priorov, V.E. Solovyev, A.M. Shemiakov
Abstract:
Development of noreference image quality assessment is a very popular research task. However, most of the proposed noreference quality assessment algorithms are distortion dependent. Which means that they can predict quality of image with specific distortion type. Аim was to develop noreference image quality algorithm that can predict image quality without any information about the type of distortion introduced to the image. We found the following solution to this task. Firstly, the type of image distortion is classified by the algorithm. The algorithm can choose among the distortion types known to it. After that system assessing quality of the image with the algorithm specially developed for the certain type of image distortion. This system can be expanded on the other types of distortion by adding quality assessment algorithms to it. We propose the method of automatic image distortion type classification by means of machine learning methods in this article. Six types of possible image distortion were used: Gaussian noise, salt and pepper impulse noise, artifacts introduced by JPEG and JPEG2000 compression algorithms, image blur caused by median filtration and motion blur. Algorithm based on support vector machine was used as a training method.
Pages: 32-35
References
  1. Гонсалес Р., Вудс Р. Цифровая обработка изображений. М.: Техносфера. 2005.
  2. Хайкин С. Нейронные сети: полный курс. М.: Издательский дом «Вильямс». 2006.
  3. Приоров А. Л., Саутов Е. Ю., Хрящев В. В. Неэталонная оценка качества JPEG-изображений // Цифровая обработка сигналов. 2007. № 3. С. 15 - 19.
  4. Саутов Е. Ю., Хрящев В. В. Разработка и анализ алгоритма неэталонной оценки качества сжатых изображений // Проектирование и технология электронных средств. 2007. № 2. С. 26 - 29.
  5. Зараменский Д. А., Хрящев В. В. Оценка качества JPEG2000 изображений // Докл. 14-й Всерос. конф. «Математическиеметодыраспознаванияобразов». Москва. 2009. С. 351-354.
  6. Niranjan D. Narvekar, Lina J. Karam An improved no-reference sharpness metric based on the probability of blur detection // 2009 International Workshop on Quality of Multimedia Experience. 2009. P. 87-91.
  7. Olsen S. I. Estimation of noise in images: an evaluation // Comput.Vision, Graphics Image Process, Graphic Models and Image Process. 1993. V. 55. №4. P. 319-323.
  8. Bilcu R. C., Vehvilainen M. A new method for noise estimation in images // Proc. IEEE EURASIP International Workshop on Nonlinear Signal and Image Processing, Sapporo. Japan. 2005.
  9. Chen T., Wu H. Adaptive impulse detection using center-weighted median filters // IEEE Signal Processing Letters. 2001. V. 8.  № 1. P. 1 - 3.