350 rub
Journal Nonlinear World №6 for 2012 г.
Article in number:
Face and hand gesture recognition based on wavelet transform and principal component method
Keywords:
face recognition
hand gesture recognition
method Viola-Jones
method principal component analysis
wavelet transform
Authors:
T.T.T. Bui, N.H. Phan, V.G. Spitsyn
Abstract:
A novel algorithm using wavelet transform and principal component analysis method is proposed for face and hand gesture recognition on digital images. The proposed algorithm testing results are presented. It is shown that use of the proposed algorithm gives effective performance of face recognition and hand gesture recognition on digital images. In this paper, an original complex algorithm based on Viola-Jones method, wavelet transform and principal component analysis method is also proposed for multiple face recognition on video. The examples of multiple face recognition on video sequence are resulted. It is shown that use of the proposed algorithm allows recognizing multiple faces on video sequence in real time.
In this paper a part of face database Collection of Facial Images, containing 336 persons and 20 images of each person (summary 20×366=7320 images), is created for testing face recognition algorithm. In this paper two face database are created for training this algorithm. The first one contains 5 images of each person (summary 5×366=1830 images), and the second one - 10 images of each person (summary 10×366=3660 images). Testing results of the proposed algorithm show that the number of rightly recognized faces is 98,4 %.
In order to test the performance of hand gesture recognition algorithm, in this paper a part of Cambridge Gesture database is used. This testing database consists of 5 parts. The contrast condition of each part is not the same. All the hand gestures are divided into 12 classes using for recognition. For each part one hand gesture database, containing 200 images of each class (summary 12×200=2400 images), is created for testing this algorithm. The combining testing database of all 5 parts contains 1000 images of each class (summary 12×1000=12000 images). For each part one training database also is created. This training database contains 20 images of each class (summary 12×20=240 images). The combining testing database of all 5 parts contains 100 images of each class (summary 12×100=1200 images). Testing results of the proposed algorithm show that the number of rightly recognized hand gestures is 94,63%.
Pages: 371-380
References
- Viola P., Jones M. J. Rapid object detection using a boosted cascade of simple features // IEEE Conf. on Computer Vision and Pattern Recognition. Kauai, Hawaii, USA, 2001.V. 1. P. 511-518.
- Viola P., Jones M. J. Robust real-time face detection // International Journal of Computer Vision. 2004. V. 57. № 2. P. 137-154.
- Гонсалес P., Вудс Р. Цифровая обработка изображений. М.: Техносфера. 2005.
- Местецкий Л. М. Математические методы распознавания образов. М.: МГУ, ВМиК, 2002 - 2004.С.42 - 44.
- SochmanJ., MatasJ.AdaBoost with totally corrective updates for fast face detection // Center for Machine Perception, Czech Technical University, Prague, 2004. URL: http://cmp.felk.cvut.cz/~sochmj1/ (дата обращения: 10.02.2012).
- Freund Y., Schapire R. E. A Short Introduction to Boosting // Journal of Japanese Society for Artifical Intelligence. September 1999. V. 14. № 5. P. 771 - 780.
- Голубев М. Н.Использование информации о цвете в алгоритме выделения лиц на базе бустинга // Нейроинформатика. 2011. Ч. 3. С. 55 - 62.
- Буй Тхи Тху Чанг, Спицын В. Г. Разложение цифровых изображений с помощью двумерного дискретного вейвлет-преобразования и быстрого преобразования // Известия Томского политехнического университета. 2011. Т. 318. № 5. С. 73 - 76.
- Буй Тхи Тху Чанг, Фан Нгок Хоанг, Спицын В. Г. Алгоритмическое и программное обеспечение для классификации цифровых изображений с помощью вейвлет-преобразования Хаара и нейронных сетей // Известия Томского политехнического университета. 2011. Т. 319. № 5. С. 103 - 106.
- Брилюк Д., Старовойтов В. Распознавание человека по изображению лица и нейросетевые методы. 2002. URL: http://daily.sec.ru/publication.cfm-pid=4425 (дата обращения: 10.02.2012).
- Spacek L.Description of the Collection of Facial Images. 2008. URL: http://cswww.essex.ac.uk/mv/allfaces/index.html (дата обращения: 10.02.2012).
- Kim T. K., Wong S. F., Cipolla R.Cambrige Hand Gesture Data set. URL: http://www.iis.ee.ic.ac.uk/~tkkim/ges_db.htm(дата обращения 10.02.2012).