350 rub
Journal Nonlinear World №3 for 2012 г.
Article in number:
Creation of regular domain structures by acoustic wave interference on surface of ferroelectrics
Authors:
V.V. Krutov
Abstract:
Ferroelectric regular domain structures use for creation of shortwave lasers, based on using second-harmonic generation of laser radiation. Unorthodox technology for formation of regular domain structures, using UHF elastic wave interference. was developed. The thermal-interference principle has been used. It has been shown, that - side-by-side - regular domain structures under combine action of acoustic waves and a uniform electric field (coercive), may be formed. The analysis is based on the consideration of the field reorientation of ferroelectric domains in presence of temperature grid, induced by acoustic waves. The conditions for creation of regular domain structures by acoustic wave interference were proposed. Two sets for formation of regular domain structures, using UHF elastic waves and liquid electrodes, was proposed. UHF radio pulse submits on input of longitudinal wave transducers. Interference picture forms a temperature grid and a domain pattern. Domains are inverted in heat regions of ferroelectric crystal. Then potential difference UC submits to surfaces of ferroelectric crystals. An algorithm for calculation to get a power of acoustic pulse, its duration and frequency, significances of parameters of main elements of technology setup was elaborated. Recommendations to choose a power of acoustic pulse, its duration and frequency were given. Thus, new method for formation of regular structures in ferroelectrics with equidistant domain walls was developed. This technology for formation of regular domain structures, using UHF elastic wave interference and liquid electrodes, does not require a using of photolithography, which usually use for set structured film electrodes. It has been shown, that this technology is the most efficient for creation of regular domain structures based on high-coercive ferroelectrics, for example, pure congruent-composition LiNbO3
Pages: 137-147
References
  1. Крутов В. В., Михалевич В. Г. Акустоэлектронные устройства на периодически поляризованных кристаллах ниобата и танталата лития // Успехи современной радиоэлектроники. 2001. № 12. С. 45-50.
  2. Крутов В. В., Михалевич В. Г., Щука А. А. Нелинейно-оптические преобразователи частоты лазерного излучения на основе микро- и нанодоменных структур в сегнетоэлектриках // Электронная промышленность. 2006. № 3. С.75-81.
  3. Yamada, M., Nada, N, Saitoh, M., Watanabe, K., First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation // Appl. Phys. Lett. 1993. V. 62. № 5. P. 435-437.
  4. Krutov, V. V., Mikhalevich, V. G., Shchuka, A. A., Acoustic dispersive filters and acoustic microwave emitters based on ferroelectrics with spatial modulation of piezoelectric modulus // Physics of Vibrations. 2001. V. 9. № 4. P. 274-279.
  5. Крутов В. В., Михалевич В. Г., Щука А. А. Инжекционный метод формирования регулярных доменных структур в сегнетоэлектриках // Междунар. науч.-практ. конф. «Фундаментальные проблемы радиоэлектронного приборостроения» (INTERMATIC - 2004). Сб. науч. статей. Москва. 6-10 сентября 2004. С. 106-109.
  6. Krutov, V. V., Mikhalevich, V. G., Shchuka, A. A., Possibility of domain structure formation in ferroelectrics on Bessel temperature grid // Physics of Wave Phenomena. 2006. V. 14. № 1. P. 19-21.
  7. Крутов В. В., Михалевич В. Г., Щука А. А. Создание нанодоменных периодических структур в сегнетоэлектриках на интерферирующих оптических волнах // Нано- и микросистемная техника. 2007. № 3. C. 71-73.
  8. Крутов В. В., Засовин Э. А., Михалевич В. Г., Сигов А. С., Щука А. А., Кабин Д. В. Технология создания фотонных кристаллов с помощью интерференции упругих волн СВЧ-диапазона // 18-я Междунар. Крымская конф. «СВЧ-техника и телекоммуникационные технологии». Сб. науч. статей. Севастополь. Украина. 8-12 сентября 2008 г. C. 793-794.
  9. Кайно Г. Акустические волны. Устройства, визуализация и аналоговая обработка сигналов. М.: Мир. 1990.
  10. Сороко Л. М. Голография и интерференционная обработка информации // УФН. 1966. Т. 90. С.3-46.
  11. Морозов А. И., Проклов В. В., Станковский Б. А. Пьезоэлектрические преобразователи для радиоэлектронных устройств.  М.: Радио и связь. 1981.
  12. Pruneri, V., Webjorn, J., Russel, P. S. J., Hanna, D. C., Intracavity second harmonic generation of 532 nm in bulk periodically poled lithium niobate // Opt. Communications. 1995. V. 116. P.159-162.