350 rub
Journal Nonlinear World №11 for 2012 г.
Article in number:
Searching of local features in images based on a texture performance
Authors:
V.V. Voronin, T.V. Morozova, D.S. Makhov, E.A. Samoylin, D.G. Minassian
Abstract:
The use of video is now growing rapidly. This is due to the implementation of various monitoring systems, computer vision, robotics, decision-makers based on the analysis of video, video telephony, and other areas. This, along with the level of technology play an important role of video processing techniques, methods of search and comparison of stable local features of images.
As local features are: points, corners, spots (or areas) and borders. Local feature image is used to combine different views of an object or scene, aerial and panoramic stitching, recovery of three-dimensional scenes, segmentation and recognition of gestures.
We propose a modification of the method SURF to handle different types of local features in the image. The modification consists in the preliminary image processing power characteristics Law-s that allows selecting a variety of local features for image texture features. By analyzing the properties of the texture defined areas that are important to correctly perform the comparison and description of the spatial distribution of color or intensity values in the image. The results of the test image processing shows that by pre-treatment imaging performance by Law-s characteristics, can detect a variety of local features.
Pages: 744-750
References
- Морозова Т.В., Воронин В.В. Алгоритм детектирования локальных особенностей на изображении // Сб. научных трудов «Современные проблемы радиоэлектроники». Ростов-на-Дону: РИО РГИСТ ФГБОУ ВПО «ЮРГУЭС». 2012. С. 151-153.
- Шапиро Л., Стокман Дж. Компьютерное зрение / пер. с англ. М.: БИНОМ. Лаборатория знаний. 2006.
- Moravec H. Obstacle Avoidance and Navigation in the Real World by a Seeing Robot Rover. 1980. P. 67-88.
- Harric C. and Stephens M. A combined corner and edge detector // Proceedings of the 4th Alvey Visions Conference. 1988. P. 147-151.
- Bay H., Tuytelaars T. SURF// Труды 9-й Европейской конференции по вопросам компьютерного зрения. Ч. 1. 2006. С. 404-417.
- Trajkovic M. and Hedley M. FAST corner detection // Image and Vision Computing 16. 1998. P. 75-87.
- David G. Lowe. Distinctive image features from scale-invariant keypoints// International Journal of Computer Vision. 2004. P. 111-139.
- Laws K. Textured image segmentation. Ph.D. dissertation, University of Southern California. 1980.
- Lindeberg T. Feature detection with automatic scale selection// International Journal of Computer Vision 30 (2). 1998. P. 77-116.
- Srinivasan G.N. and Shobha G. Statistical Texture Analysis. Proceedings of world academy of science. 2008. V. 36. Р. 1264-1269
- Воронин В.В., Марчук В.И., Саакян Г.Р. Метод построения составной кривой при восстановлении границ объектов на изображении // Успехи современной радиоэлектроники. 2011. №9. С. 11-15.