350 rub
Journal Nonlinear World №10 for 2012 г.
Article in number:
Correlation between the spatial structure of soft precipitation from DMSP measurements and the disturbances in ionospheric electron density from satellite radio tomography
Authors:
E.S. Andreeva, M.A. Kozharin, V.E. Kunitsyn M.O. Nazarenko
Abstract:
Diagnostics of auroral precipitation is one of the important topics in the modern research on the ionospheric physics. The interest to this problem is drawn by the fact that precipitation, on one hand, reflects the state of the magnetospheric-ionospheric-atmospheric coupling and is an important element of fundamental description of the medium. On the other hand, the effects caused by precipitation play an important part in a number of practical applications, e.g. those associated with electromagnetic propagation. Particle precipitation causes redistribution of the electrical currents, various optical and UV phenomena, and variations in the ionospheric parameters (electron density, electron and ion temperature, etc.) Precipitation can affect large-scale distribution of the ionospheric plasma and modulate local ionospheric plasma structures. Being a nonlinear phenomenon by its nature, particle precipitation can generate various wave-like processes in the ionosphere. The studies addressing the effects of precipitation, their interrelation, and linkage between their parameters with the characteristics of the precipitating particles are important field in the modern research into the physics of the near-Earth interactions. One of the directions of this research is investigation of the interrelation between precipitation and the distribution of electron density in the ionosphere by remote sensing and, primarily, by ionospheric radio tomography (RT). The methods of low-orbital satellite RT are suitable for reconstructing two-dimensional (2D) cross sections of electron density distribution in the ionosphere in the vertical plane above the receiving RT chain with a horizontal resolution of 20-30 km and vertical resolution of 40-50 km. The high-orbital RT is capable of reconstructing 3D spatial structure of the ionosphere with a resolution of about 100 km in the regions with nondense network of receivers. In the paper, the RT images of the ionospheric electron concentration are compared with the structure of soft precipitation during quiet and geomagnetically disturbed periods. The data on precipitation are mainly derived from the DMSP satellite measurements. It is found that the distribution of electron density reconstructed by the RT methods is qualitatively similar to the latitudinal variations in the fluxes of precipitating electrons and ions. During the periods of geomagnetic disturbances, the patterns of electron density distributions contain multiple extrema and wavelike structures with a spatial scale of about dozens to hundreds of kilometers. These distributions qualitatively correspond to the structure of corpuscular ionization, which is found to widely vary from a few degrees to dozens of degrees.
Pages: 661-671
References
  1. Гальперин Ю. И., Сивцева Л. Д., Филиппов В. М., Халипов В. Л. Субавроральная верхняя ионосфера. Новосибирск: Наука. 1990.
  2. Collis, P. N. and Haggstrom, I., Plasma Convection and Auroral Precipitation Processes Associated with the Main Ionospheric Trough at High Latitudes // J. Atmos. Terr. Phys. 1988. V. 50. P. 389-404.
  3. Voiculescu, M., Nygrén, T., Aikio, A., and Kuula, R., An Olden but Golden EISCAT Observation of a Quiet-Time Ionospheric Trough //J. Geophys. Res. 2010. V. 115. P. A10315.
  4. Jones, D. G., Walker, I. K., and Kersley, L., Structure of the Poleward Wall of the Trough and the Inclination of the Geomagnetic Field above the EISCAT Radar // Ann. Geophys. 1997. V. 15. P. 740-746.
  5. Nilsson, H., Sergienko, T. I., Ebihara, Y., and Yamauchi, M., Quiet-Time Mid-Latitude Trough: Influence of Convection, Field-Aligned Currents and Proton Precipitation // Ann. Geophys. 2005. V. 23. P. 3277-3288.
  6. Stolle, C., Lilensten, J., Schluter, S., Jacobi, Ch., Rietveld, M., and Luhr, H., Observing the North Polar Ionosphere on 30 October 2003 by GPS Imaging and IS Radars // Ann. Geophys. 2006. V. 24. P. 107-113.
  7. Yin, P., Mitchell, C.N., Spencer, P., McCrea, I., and Pedersen, T., A Multi-Diagnostic Approach to Understanding High-Latitude Plasma Transport during the Halloween 2003 Storm // Ann. Geophys. 2008. V. 26. P. 2739-2747.
  8. Weber, E. J., Buchau, J., Moore, J. G., Sharber, J. R., Livingston, R. C., Winningham, J. D., and Reinisch, B. W., F-Layer Ionization Patches in the Polar Cap // J. Geophys. Res. 1984. V. 89. P. 1683-1694.
  9. Walker, I. K., Moen, J., Kersley, L., and Lorentzen, D. A., On the Possible Role of Cusp/Cleft Precipitation in the Formation of Polarcap Patches // Ann. Geophys. 1999. V. 17. P. 1298-1305.
  10. Smith, A. M., Pryse, S. E., and Kersley, L., Polar Patches Observed by ESR and Their Possible Origin in the Cusp Region // Ann. Geophys. 2000. V. 18. P. 1043-1053.
  11. Sojka, J. J. and Schunk, R. W. A Theoretical Study of the Production and Decay of Localized Electron Density Enhancements in the Polar Ionosphere // J. Geophys. Res. 1986. V. 91. № A3. P. 3245-3253.
  12. Labelle, J., Sica, R. J., Kletzing, C., Earle, G. D., Kelley, M. C., Lummerzheim, D., Torbert, R. B., Baker, K. D., and Berg, G., Ionization from Soft Electron Precipitation in the AuroralF Region //J. Geophys. Res. 1989. V. 94. № A4. P. 3791-3798.
  13. Kunitsyn, V. E., Tereshchenko, E. D., Radiotomography of the Ionosphere // IEEE Antennas Propag. Mag. 1992. V. 34. P. 22-32.
  14. Kunitsyn, V. E. and Tereshchenko, E. D., Ionospheric Radio Tomography. Berlin: Springer. 2003.
  15. Куницын В. Е., Терещенко Е. Д., Андреева Е. С.Радиотомография ионосферы. М.: Наука. 2007.
  16. Куницын В. Е., Терещенко Е. Д., Андреева Е. С., Нестеров И. А. Спутниковое радиозондирование и радиотомография ионосферы // УФН. 2010. Т. 180. № 5. С. 548-553.
  17. Nygrén, T., Tereshchenko, E. D., Khudukon, B. Z., Evstafiev, O. V., Lehtinen, M. S., Markkanen, M. Manifestations of Field-Aligned Currents in Tomographic Observations of the Ionospheric F Region // Adv. Space Res. 2000. V. 26. № 6. P. 939-942.
  18. Moen, J., Berry, S. T., Kersley, L., and Lybekk, B., Probing Discrete Auroral Arcs by Ionospheric Tomography // Ann. Geophys. 1998. V. 16. P. 574-582.
  19. Dymond, K. F., Thonnard, S. E., McCoy, R. P. and Thomas, R. J., An Optical Remote Sensing Technique for Determining Nighttime F Region Electron Density // Radio Sci. 1997. V. 32. № 5. P. 1985-1996.
  20. Paxton, L.J., Humm, D.C., Christensen, A.B. et al. Global Ultraviolet Imager (GUVI): Measuring Composition and Energy Inputs for the NASA Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) Mission // SPIE Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research III. 1999. V. 3756. P. 265-276.
  21. DeMajistre, R., Paxton, L.J., Morrison, D., et al.,Retrievals of Nighttime Electron Density from Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) Mission Global Ultraviolet Imager (GUVI) Measurements // J. Geophys. Res. 2004. V. 109. P. A05305. doi:10.1029/2003JA010296
  22. http://guvi.jhuapl.edu/guvi_home.html
  23. Лукин Д. С., Палкин Е. А. Численный канонический метод в задачах дифракции и распространения электромагнитных волн в неоднородных средах. М.: МФТИ. 1982.
  24. Крюковский А. С., Лукин Д. С. Краевые и угловые катастрофы в равномерной геометрической теории дифракции. М.: МФТИ, 1999.
  25. Крюковский А. С., Лукин Д. С., Растягаев Д. В.Моделирование лучевой и каустической структуры электромагнитных полей по данным радиотомографии в окрестности экваториальной аномалии // Электромагнитные волны и электронные системы. 2010. Т. 15 № 8. С. 5-11.
  26. Pryse, S. E., Radio tomography: A new experimental technique // Surveys in Geophysics. 2003. V. 24. P. 1-38.
  27. Bust, G. S. and Mitchell, C. H., History, Current State, and Future Directions of Ionospheric Imaging // Rev. Geophys. 2008. V. 46. P. 1-23.
  28. Kersley, L., Ionospheric Tomography and its Applications in Radio Science and Geophysical Investigations // Ann. Geophys. 2005. V. 48. № 3. P. 535-548.
  29. http://www.haarp.alaska.edu/haarp/data.html
  30. Куницын В. Е., Андреева Е. С., Кожарин М. А., Нестеров И. А. Радиотомография ионосферы с применением высокоорбитальных навигационных систем // Вестник МГУ. Серия 3. Физика. Астрономия. 2005. Т 1. №. 1. С.74-84.
  31. Nesterov, I. A., Kunitsyn, V. E., GNSS radio tomography of the ionosphere: the problem with essentially incomplete data // Adv. Space Res. Special Issue: GNSS Remote Sensing. 2011. V. 47. P. 1789-1803.
  32. Куницын В. Е., Нестеров И. А., Падохин А. М., Туманова Ю. С. Радиотомография ионосферы на базе навигационных систем GPS/ГЛОНАСС // Радиотехника и электроника. 2011. Т. 56. № 11. С. 1285-1297.
  33. Hardy, D. A., Gussenhoven, M. S., and Holeman E., A Statistical Model of Auroral Electron Precipitation // J. Geophys. Res. 1985. V. 90. № A5. P. 4229-4248.
  34. Newell, P.T. and Meng, C.-I.,Mapping the Dayside Ionosphere to the Magnetosphere according to Particle Precipitation Characteristics // Geophys. Res. Lett. 1992. V. 19. P. 609-612.
  35. Newell, P.T., et al., The Morphology of Nightside Precipitation // J. Geophys. Res. 1996. V. 101. P. 10737-10748.
  36. Frey, H. U., Localized Aurora beyond the Auroral Oval // Rev. Geophys. 2007. V. 45. P. RG1003.
  37. http://spidr.ngdc.noaa.gov/spidr/
  38. http://sd-www.jhuapl.edu/Aurora/spectrogram/index.html
  39. Foster, J.C., Buonsanto, M. J., Kunitsyn, V. E., et al., Russian-American Tomography Experiment // Int. J. Imag. Sys. Tech. 1994. V. 5. P. 148-159.
  40. Foster, J. C., Rich, F. J., Prompt midlatitude electric field effects during severe geomagnetic storms // J. Geophys. Res. 1998.
    V. 103. № A11. P. 26367-26372.
  41. Foster, J. C., Cummer, S., and Inan, U. S., Midlatitude Particle and Electric Field Effects at the Onset of the November 1993 Geomagnetic Storm // J. Geophys. Res. 1998. V. 103. № A11. P. 26359-26366.