350 rub
Journal Nonlinear World №5 for 2011 г.
Article in number:
Fractional Wave Equation for Dielectrics with Havriliak-Negami Response
Authors:
V.V. Uchaikin, R.T. Sibatov, D.V. Uchaikin, D.V. Schulezhko
Abstract:
The fractional generalizations of the relaxation equation and the wave equation in dielectrics with the response function of the Havriliak-Negami type are considered. The obtained fractional wave equation is concordant with the equation obtained in [Tarasov V. E. J. Phys.: Condens. Matter, 20 (2008) 145212] from Jonscher's universal law. The explicit expression for the fractional operator in this equation is obtained and the Monte Carlo algorithm for calculation of actions of this operator and of the inverse one is constructed
Pages: 294-301
References
  1. Fröhlich H. Theory of Dielectrics. 2nd ed. Oxford: Oxford University Press. 1958.
  2. Debye P. Polar Molecules. New York: Dover. 1954.
  3. Jonscher A. K. The «universal» dielectric response // Nature. 1977. V. 267. P. 673 - 679.
  4. Ramakrishnan T. V., Raj Lakshmi M. Non-Debye Relaxation in Condensed Matter. Singapore: World Scientific. 1987.
  5. Cole K. S., Cole R. H. Dispersion and absorption in dielectrics // Journal of Chemical Physics. 1941. V. 9. P. 341 - 351.
  6. Davidson D. W., Cole R. H. Dielectric relaxation in glycerol, propylene glycol, and n-propanol // Journal of Chemical Physics. 1951. V.19. P. 1484 - 1490.
  7. Havriliak S., Negami S. A complex plane analysis of α-dispersions in some polymer systems // Journal of Polymer Science. 1966. V. 14. P. 99.
  8. Novikov V. V., Wojciechowski K. W., Komkova O. A., Thiel T. Anomalous relaxation in dielectrics. Equations with fractional derivatives // Material Science - Poland. 2005. V. 23. P. 977.
  9. Nigmatullin R. R., Ryabov Ya. E. Cole-Davidson dielectric relaxation as a self-similar relaxation process //  Physics of Solid State. 1977. V. 39. P. 87 - 90.
  10. Jonscher A. K. Universal Relaxation Law. London: Chelsea-Dielectrics Press. 1996.
  11. Weron K. How to obtain the universal response law in the Jonscher screened hopping model for dielectric relaxation // Journal of Physics: Condens. Matter. 1991. V. 3. P. 221.
  12. Weron K., Kotulski M. On the equivalence of the parallel channel and the correlated cluster relaxation models // Journal of Statistical Physics. 1996. V. 88. P.1241.
  13. Nigmatullin R. R. To the theoretical explanation of the «universal response» // Phys. Stat. Sol. (b). 1984. V. 123. P. 739 - 745.
  14. Glöckle W. G., Nonnenmacher T. F. Fox function representation of non-Debye relaxation processes // Journal of Statistical Physics. 1993. V. 71. P. 741.
  15. Jurlewicz A., Weron K. Relaxation dynamics of the fastest channel in multichannel parallel relaxation mechanism.  Chaos, Solitons and Fractals. 2000. V.11. P. 303.
  16. Coffey W. T., Kalmykov Yu. P., Titov S. V. Anomalous dielectric relaxation in the context of the Debye model of noninertial rotational diffusion // J. Chem. Phys. 2002. V. 116. P. 6422.
  17. Déjardin J.-L. Fractional dynamics and nonlinear harmonic responses in dielectric relaxation of disordered liquids // Phys. Rev. E. 2003. V. 68. P. 031108.
  18. Aydiner Ekrem. Anomalous rotational relaxation: A fractional Fokker-Planck equation approach //  Phys. Rev. E. 2005. V. 71. P. 046103.
  19. Weron K., Jurlewicz A., Magdziarz M. Havriliak-Negami response in the framework of the continuous-time random walk // Acta Physica Polonica B. 2005. V. 36. P. 1855 - 1868.
  20. Bochner S. Diffusion equation and stochastic processes // Proc. Nat. Acad. Sci. U.S.A. 1949. V. 35. P. 368 - 370.
  21. Phillips R. S. On the generation of semigroups of linear operators // Pacific J. Math. 1952. V. 2. P. 343 - 369.
  22. Yosida K. Functional Analysis // Springer. 1980.
  23. Tarasov V. E. Fractional equations of Curie-von Schweidler and Gauss laws // J. Phys.: Condens. Matter. 2008. V.20. P.145212.
  24. Tarasov V. E. Universal Electromagnetic Waves in Dielectric // Journal of Physics: Condensed Matter. 2008. V. 20. P. 175223.
  25. Uchaikin V. V., Uchaikin D. V. About memory regeneration effect in dielectrics // Scientist Notes of Ulyanovsk State University. Physical Series. 2005. V. 1(17). P. 14.
  26. Uchaikin V. V., Uchaikin D. V. // Proc. Int. Conf. on - Chaos, Complexity and Transport - (France, Marseille). 2007. P. 337.
  27. Uchaikin V. V. Method of Fractional Derivatives. Ulyanovsk: Artishok. 2008.
  28. Uchaikin V. V., Sibatov R. T., Uchaikin D. V.  Memory regeneration phenomenon in dielectrics: the fractional derivative approach //  Physica Scripta. 2009. V. 136. P. 014002.
  29. Uchaikin V. V., Ambrozevich S. A., Sibatov R. T. About memory phenomenon in dielectrics // Proc. XI Int. Conf. on «Physics of Dielectrics» (Saint-Petersburg). 2008. P. 129 - 130.