350 rub
Journal Nonlinear World №3 for 2011 г.
Article in number:
Analysis of the Electromagnetic Wave Propagation in the Devices Based on the Nonlinear Bragg Grating Structure
Authors:
A.V. Sadovnikov, A.G. Rozhnev
Abstract:
The Bragg grating systems is widely used in the optical communications systems, as a notch filters, in the optical multiplexers and demultiplexers with an optical circulator and as a fiber Bragg grating sensors. The nonlinear waveguides and the periodical nonlinear structures exhibit attractive properties that make them suitable for novel devices development with the wavelength tuneable characteristics. In this paper, the model of Bragg grating consisting of periodical layers with the Kerr nonlinearity is considered. The values of the cut-off frequencies are approximately estimated with the effective refractive index method. The obtained values of the cut-off frequencies are in good correspondence to the theoretical results The dynamic of electromagnetic wave propagation in the nonlinear Bragg grating is numerically studied. For the calculations of the transmission spectra and spatio-temporal dynamics we utilize the FDTD (Finite Difference Time Domain) numerical simulation method. To simulate the wave propagation in an unbounded medium the PML (Perfectly Matched Layer) absorbing boundary conditions was used. The possibility of the propagation of the signal which frequency lie within the band gap was demonstrated: the CW signal with the small amplitude and frequency which lie within the band gap exponentially decay along the system, but it was demonstrated that increasing the input signal amplitude one can obtain the signal propagation along the system. Moreover the signal profile inside the Bragg grating is specifically modulated.
Pages: 131-134
References
  1. Othonos A., Kalli K. Fiber Bragg Gratings. London: Artech House. 1999.
  2. Pinto D., Obayya S.S.A., Rahman B.M.A., Grattan K.T.V. FDTD analysis of nonlinear bragg grating based devices // Optical and Quantum Electronics. 2006. V. 38. № 15. P. 1217-1235.
  3. Broderick N. G. R., Taverner D., Richardson D. J. Nonlinear switching in fibre Bragg gratings // Optics Express. 1998. V. 3. № 11. P. 447-453.
  4. Eggleton B.J., De Sterke C. M. Nonlinear pulse propagation in Bragg gratings // J. Opt. Soc. Am. B. 1997. V. 14. № 11. P. 2980-2993.
  5. Newell A.C. Nonlinear tunnelling // J. Math. Phys. 1978. V. 19. № 5. P. 1126-1134.
  6. Balyakin A.A., Ryskin N.M.Modulation Instability in a Nonlinear Dispersive Medium Near Cut-Off Frequency // Nonlinear Phenomena in Complex Systems. 2004. V. 7. № 1. P. 34-42.
  7. Chen W., Mills D.L. Gap solitons and the nonlinear optical response of superlattices // Phys. Rev. Lett. 1987. V. 58. P. 160-163.
  8. Akhmanov S.A.Optics of Femtosecond Laser Pulses. New York: American Institute of Physics. 1992.
  9. Taflove A., Hagness S.C. Computational Electrodynamics: The Finite-Difference Time-Domain Method. Norwood. MA: Artech House. 2005.
  10. Brovko A.V., Manenkov A.B., Rozhnev A.G. FDTD-analysis of the Wave Diffraction from Dielectric Waveguide Discontinuities // Optical and Quantum Electronics. 2003. V. 35. № 4. P. 395-406.
  11. Oskooi A.F., Roundy D., Ibanescu M., Bermel P., Joannopoulos J.D., Johnson S.G. MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method // Computer Physics Communications. 2010. № 181. P. 687-702.
  12. Mittra R., Pekel U. A new look at the perfectly matched layer (PML) concept for the reflectionless absorption of electromagnetic waves // IEEE Microwave Guided Wave Lett. 1995. V. 5. № 3. P. 84-86.
  13. Виноградова М.Б., Руденко О.В., Сухоруков А.П. Теория волн. М.: Наука. 1979.
  14. Marcatili E.A.J.Dielectric rectangular waveguide and directional coupler for integrated optic // Bell Syst. Tech. J. 1969. V. 48. P. 2071-2102.
  15. Балякин А.А., Рыскин Н.М. Смена характера модуляционной неустойчивости вблизи критической частоты // Письма в ЖТФ. 2004. Т. 30. Вып. 5. С. 6-13.