350 rub
Journal Nonlinear World №2 for 2011 г.
Article in number:
The dispersion control of optical microstructured fiber
Authors:
A.G. Rozhnev, A.V. Sadovnikov, M.P. Chernyaev
Abstract:
The optical fiber with photonic crystal cladding provide new approaches for achieving single transverse mode guiding in large core fibers. Such fiber often is named microstructured fibers (MF). There are many applications of MF in fiber-optic communications, fiber lasers, nonlinear devices, high-power transmission devices, ultrabroad supercontinuum generation and broadband dispersion compensation. MF with a solid core, which has a higher average index than the microstructured cladding, can operate on the same index-guiding principle as an ordinary optical fiber. Such fiber exhibit novel dispersion properties such as ultra-flat dispersion over broad wavelength range. We considered the MF with the hexagonal lattice of rods with finite wall thickness in the fiber cladding. Thereby we assumed the complicated triangle-form area in the transverse section of MF that usually appears during the manufacture of such fiber. The control of dispersion in fiber has been demonstrated by variation of geometrical parameters of fiber such as size of an air-hole defect in the fiber core and distance between holes. The effect of varying cladding parameters is estimated to find the trends of the decrease of dispersion slope and control of absolute value of dispersion coefficient and then applied to the design of an ultralow, ultra-flattened chromatic dispersion photonic-crystal fiber. The numerical modeling of microstructured fiber was performed using two methods, namely finite-element method (FEM) and the plane-wave method (PWM). The former assumed the explicit frequency or wavelength dependence of the refractive index. The latter was applied with the supercell modification and the material dispersion wasn-t assumed explicitly. For the computation with finite-element method the program for calculation of eigenmodes dispersion of the transmission line with complicated transverse section was applied. The plane-wave simulation was done by MPB (MIT Photonic Bands) package, developed in Massachusetts Institute of Technology. We have shown that the variation of geometrical parameters of optical microstructured fiber can modify the dispersion properties of such system. We have demonstrated that dispersion slope and absolute value of dispersion coefficient of MFs can be controlled with a change of size of an air-hole defect in the fiber core, with variation of interval between holes and with a doping the center part of the fiber with germanium dioxide. Simulations and estimations shows that one can construct a system based on microstructured-fibers with minute difference of dispersion coefficient in the operating range of wavelength and dispersion control can help to improve transmission speeds and distances.
Pages: 99-106
References
  1. Желтиков А.М. Нелинейная оптика микроструктурированных волокон» // УФН. 2004. Т. 174. № 1. C. 73-105.
  2. Joannopoulos J.D., Johnson S.G., Winn J.N., Meade R.D. Photonic Crystals. Molding the flow of light. Second edition. Princeton University Press.2008.
  3. Russel P. Photonic Crystal Fibers». Science. 2003. V. 299. № 5605. P. 358-362.
  4. Broeng J., Mogilevstev D., Barkou S.E., and Bjarklev A. Photonic crystal fibers: A new class of optical waveguides // Opt. Fiber Technol. 1999. № 5. P. 305‑330.
  5. Birks T.A., Knight J.C., Mangan B.J., and Russell P.St.J. Photonic crystal fibers: An endless variety // IEICE Trans. Electron. 2001. E84-C. P. 585‑592.
  6. Knight J.C., Birks T.A., Russell P.St.J., and Atkin D.M. All-silica single-mode optical fiber with photonic crystal cladding // Opt. Lett. 1996. № 21. P. 1547‑1549
  7. Naumov A.N., Fedotov A.B., Bugar I., Chorvat D. Supercontinuum Generation in Photonic-Molecule Modes of Microstructure Cobweb Fibers and Photonic-Crystal Fibers with Femtosecond Pulses of Tunable 1.1-1.5-μm Radiation // Laser Physics. 2002.
    V. 12. №. 8. Р. 1191-1198.
  8. Saitoh K., Koshiba M., Hasegawa T., Sasaoka E. Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion // Optics Express. 2003. V. 11. № 23. P. 843‑852.
  9. Tsuchida Y., Saitoh K., Koshiba M. Design of single-moded holey fibers with large-mode-area and low bending losses: the significance of the ring-core region // Optics Express. V. 15. № 4. P. 1794‑1803.
  10. Hoo Y.L., Jin W., Ju J., Ho H.L., Wang D.N. Design of photonic crystal fibers with ultra-low, ultra-flattened chromatic dispersion // Optics Communications. 2004. № 242. P. 327‑332.
  11. Бровко А.В., Маненков А.Б., Рожнев А.Г. Конечно-элементная модель волоконно-оптического поляризатора // Изв. Вузов. Радиофизика. 2001. Т. 44. № 7. С. 615-622.
  12. Sorensen D.C. Implicit application of polynomial filters in a k-step Arnoldi method // SIAM J. Matrix Anal. Appl. 1992. V. 13.
    № 1. P.357.
  13. Selleri S.,  Vincetti L.,  Cucinotta A., Zoboli M.  Complex FEM modal solver of optical waveguides with PML boundary conditions //  Optical and Quantum Electronics. 2001. V. 33. № 4-5. P. 359-371.
  14. Eliseev M.V., Rozhnev A.G., Manenkov A.B. Guided and Leaky Modes of Complex Waveguide Structures // J. Lightwave Technol. 2005. V. 23. P. 2586.
  15. Johnson S.G., Joannopoulos J.D. Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis // Optics Express. 2001. V. 8. № 3. P. 173-190.
  16. Агравал Г. Нелинейная волоконная оптика. М.: Мир. 1996.
  17. Agrawal G.P. Applications of Nonlinear Fiber Optics. New York: Academic Press. 2001.
  18. Simmons J.H., Potter K.S.  Optical Materials. New York: Academic Press. 2000. P. 103.
  19. Василенко В.А. Сплайн-функции: теория, алгоритмы, программы. Новосибирск: Наука. 1983.