350 rub
Journal Nonlinear World №3 for 2010 г.
Article in number:
The model of phase boundary motion in drying sessile drop of colloidal solution
Authors:
I.V. Vodolazskaya, Yu.Yu. Tarasevich, O.P. Isakova
Abstract:
Understanding the process of drying of protein solution drop is important for scientific and medical applications. In the drying sessile drops of bioliquids many appearances can be observed: the ringlike deposit, sol-gel transition, complex drop profile behavior, deformations of the gel-air interface, stik-slip motion of the contact line, crystallization. In this paper we proposed the model of round drying drop based on conservation equations, phase boundary condition and assumption that maximal drop height decreases with approximate constant velocity. Experimentally, the drying drop is bounded by the contact line in the plane of the substrate, the contact line remains pinned during most of the drying process, one is forced to fluid flow generation toward contact line. This flow is capable of transferring all of the solute to the contact line and thus accounts for the ringlike deposit. Our model is two-component (the fluid and the solute) system with two phases: sol in the middle of the drop and gel near the contact line. The volume fraction of the solute in gel phase is high and fixed. In sol phase space averaged volume fraction of the solute changes with time. Our assumptions are: into the low concentrate solution small drops gravitational effects can be neglected, so the boundary between the phases is vertical; diffusion effects for solute can be neglected (the diffusion coefficient of protein molecules is small); the fluid density is constant; the evaporation rate is small and constant in the sol phase, the drying of the drop occurs under constant temperature condition; the liquid-air interface is spherical surface (for slow flows we can consider the surface shape as equilibrium shape); the gel phase obstructs the liquid flow (such is the case albumin gel); the gelation process near the liquid-air interface is neglected; the maximal drop height velocity is proportional to averaged volume fraction of the solute; the contact angle between the liquid-air interface and gel-air interface on the phase boundary is proportional to averaged volume fraction of the solute. The model involves a set of nonlinear partial differential equations and requires numerical calculation for the analysis. We investigated parameter dependence of the drop shape, the same as: initial volume fraction of the solute, drop dimensions, the ratio of the maximal drop height velocity to the evaporation rate. Simulation data allow a good description of the protein solution drop shape with small initial solute concentration.
Pages: 142-150
References
  1. Helseth L. E., Fischer T. M.Particle interactions near the contact line in liquid drops // Physical Review E. 2003. V. 68. P. 042601.
  2. Govor L. V., Reiter G., Parisi J., Bauer G. H. Self-assembled nanoparticle deposits formed at the contact line of evaporating micrometer-size droplets // Physical Review E. 2004. V. 69. P. 061609.
  3. Harris D. J., Hua Hu, Conrad J. C., Lewis J. A.Patterning Colloidal Films via Evaporative Lithography // Physical Review Letters. 2007. V. 98. P. 148301.
  4. Jun Xu, Jianfeng Xia, Suck Won Hong, Zhiqun Lin, Feng Qiu, Yuliang Yang. Self-Assembly of Gradient Concentric Rings via Solvent Evaporation from a Capillary Bridge // Physical Review Letters. 2006. V. 96. P. 066104.
  5. Abramchuk S. S., Khokhlov A. R., Iwataki T., Oana H., Yoshikawa K. Direct observation of DNA molecules in a convection flow of a drying droplet // Europhysical Letters. 2001. V. 55. No. 2. P. 294.
  6. Rieger B., van den Doel L. R., van Vliet L. J. Ring formation in nanoliter cups: Quantitative measurements of flow in micromachined wells // Physical Review E. 2003. V. 68. P. 036312.
  7. Савина Л. В.Кристаллоскопические структуры сыворотки крови здорового и больного человека. Краснодар: Советская Кубань. 1999.
  8. Шабалин В.Н., Шатохина С.Н. Морфология биологических жидкостей человека. М.: Хризостом. 2001.
  9. Рапис Е.Белок и жизнь (самосборка и симметрия наноструктур белка). Иерусалим; М.: ЗЛ. Милта-ПКП ГИТ. 2002.
  10. Takhistov P., Chang H.-C. Complex Stain Morphologies // Ind. Eng. Chem. Res. 2002. V. 41. P. 6256-6269.
  11. Ragoonanan V., Aksan A. Heterogeneity in Desiccated Solutions: Implications for Biostabilization // Biophysical Journal. 2008.
    V. 94. P. 2212-2227.
  12. Parisse F., Allain C. Shape Changes of Colloidal Suspension Droplets during Drying // J. Phys. II France. 1996. V. 6. P. 1111-1119.
  13. Deegan R.D., Bakajin O., Dupont T.F., Huber G., Nagel S.R., Witten T.A. Capillary flow as the cause of ring stains from dried liquid drops // Nature.1997. V. 389. P. 827-829.
  14. Deegan R.D., Bakajin O., Dupont T.F., Huber G., Nagel S.R., Witten T.A.Contact line deposits in an evaporating drop // Physical Review E. 2000. V. 62. P. 756-765.
  15. Pauchard L., Parisse F., Allain C. Influence of salt content on crack patterns formed through colloidal suspension desiccation // Physical Review E. 1999. V. 59. P. 3737-3740.
  16. Popov Yu. O.Evaporative deposition patterns: Spatial dimensions of the deposit // Physical Review E. 2005. V. 71. P. 036313.
  17. Deegan R. Pattern formation in drying drops // Physical Review E. 2000. V. 61. P. 475-485.
  18. Widjaja E., Harris M.T. Partiсle deposition study during sessile drop evaporation // AIChE Journal. 2008. V. 54. No. 5. P. 2250-2260.
  19. Cachile M., Benichou O., Cazabat A.M. Evaporating droplets of completely wetting liquids // Langmuir. 2002. V. 18. P. 7985-7990.
  20. Anderson D.M., Davis S.H. The spreading of volatile liquid droplets on heated surfaces // Physics of Fluids. 1995. V. 7. P. 248-265.
  21. Annarelli C.C., Fornazero J., Bert J., Colombani J.Crack patterns in drying protein solution drops // Eur. Phys. E. 2001. V. 5.
    P. 599-603.
  22. Okuzono T., Kobayashi M., Doi M. Final shape of a drying thin film // Physical Review E. 2009. V. 80. P. 021603.
  23. Тарасевич Ю.Ю., Православнова Д.М. Качественный анализ закономерностей высыхания капли многокомпонентного раствора на твердой подложке // Журнал технической физики. 2007. Т. 77(2). С. 17-21.
  24. Bhardwaj R., Fang X., Attinger D. Pattern formation during the evaporation of a colloidal nanoliter drop: a numerical and experimental study // New Journal of Physics. 2009. V. 11. P. 075020.
  25. Яхно Т.А., Яхно В.Г., Санин А Г., Пелюшенко А.С., Шапошникова О.Б., Чернов А.С. Феномен высыхающей капли и возможности его практического использования // Нелинейный мир. 2007. № 1-2. С. 54-65.
  26. Zheng R. A study of evaporative deposition process: Pipes and truncated transport dynamics // Eur. Phys. J. E. 2009. V. 29. P. 205-218.
  27. Suzuki Y.Y., Tokita M., Mukai S. Kinetics of water flow through a polymer gel // Eur. Phys. J. E. 2009. V. 29. P. 415-422.