350 rub
Journal Nonlinear World №12 for 2010 г.
Article in number:
Modelling of Electromagnetic Waves Interaction with the Plasma Waves
Authors:
V.G. Spitsyn
Abstract:
In paper suggested the stochastic model of transversal electromagnetic waves interaction with the longitudinal plasma waves. The process of multiply interaction of photons with the quantums of plasma waves in the media is simulated. The distribution of energy of scattering electromagnetic signal in dependence of wave frequency and scattering angle has been received in the results of computer imitation of stochastic model.
Based on the analysis of the results we can do the conclusion about the importance of the effect of multiple interactions of electromagnetic waves with longitudinal plasma waves, which lead to appearance of set of harmonics of the scattered signal. The continuity forms of angular spectrum of scattered electromagnetic signal is explained of the presence of random components of the wave vectors of the transverse electromagnetic wave and longitudinal wave plasma, which interacting with one another.
Pages: 785-788
References
- Цытович В.Н. Нелинейные эффекты в плазме. М.: Наука. 1967.
- Горбунов Л.М., Фролов А.А. Об излучении на удвоенной плазменной частоте из области взаимодействия двух коротких лазерных импульсов в разреженной плазме // ЖЭТФ. 2004. Т. 125. Вып. 3. 2004. C. 598 - 608.
- Hall J.Interaction between electromagnetic wave and localized plasma oscillations. Ph. D. Thesis. Uppsala. 2004.
- Spitsyn V.G.Numerical model of electromagnetic wave interaction with longitudinal oscillations of plasma // EUROEM 2004 Book of abstracts. Euro Electromagnetics. Magdeburg. Germany. 12-16 July 2004. P. 61 - 62.
- Спицын В.Г. Моделирование рассеяния радиоволн на возмущениях ионосферной плазмы, создаваемых космическим аппаратом. М.: ФИЗМАТЛИТ, 2003.
- Спицын В.Г. Моделирование распространения электромагнитной волны в слоистой случайной дискретной среде, содержащей полупрозрачные объекты // Электромагнитные волны и электронные системы. 2010. Т. 15. № 1. С. 32 - 35.