350 rub
Journal Nonlinear World №11 for 2010 г.
Article in number:
The Affect of Errors on the Quality of Streaming Video Standard H.264 / AVC Over WiMAX Broadband Wireless Access Networks
Authors:
O.I. Sheluhin, U.A. Ivanov
Abstract:
Streaming traffic is the kind of traffic which is characterized by processing data in real time as it received by user equipment. Transfer of streaming services over different media (wireless systems, Internet) becomes more and more popular. This rapid spread defines a new challenge to maintain service quality for each flow. However, transmission errors can seriously affect the quality of streaming video because the compressed data is very sensitive to these errors. This paper investigates the impact of errors on the quality of streaming H.264/AVC video in broadband wireless access systems such as WiMAX. Wireless channels are characterized by randomly distributed and independent bit errors. Therefore, the model of additive white Gaussian noise (AWGN) is often used in simulating the wireless channel, in which certain bits in the sequence are inverted with a given probability. This probability is described by the value of BER. We can calculate the impact of bit errors on the final quality of the video by comparing the original and distorted video. Traditionally, the video quality is evaluated using subjective and objective indicators. Subjective quality assessment is always based on the impression of the viewer and calculated as the average score MOS (Mean Opinion Score). Objective video quality is usually measured by peak signal to noise ratio (PSNR). The simulation transfer of a 30-minute video over a IEEE 802.11 wireless network with random bit errors in the channel was held in order to analyze the effect of bit errors on the resulting quality of the video. It is shown that BER ≤ 3 * 5.10 does not affect on the received video quality and easily eliminated by implemented in WiMAX methods of protection. BER ≥ 4 * 3.10 leads to the maximum value of loss and to an unacceptable quality of the received video. We can ensure excellent quality of video when the probability of bit error rate less than 1 * 10-4, a good quality in a range of 1 * 10-4 to 4 * 10-4, satisfactory quality in the range of 4 * 10-4 to 8 * 10-4, poor quality in the range of 8 * 10-4 to 1 * 10-3 and worst at BER ≥ 1 * 3.10. Using variable length codes in WiMax systems in coding of H.264/AVC video leads to disruption of the synchronization of decoded video sequences and the appearance of additional groups of errors. This influence on the decoded video is much stronger than bit errors, because it leads to loss of large segments of the information.
Pages: 685-696
References
  1. Иванов Ю.А., Лукьянцев С.А. Методика оценки качества декодирования видео стандарта H.264/AVC/SVC в беспроводных сетях // Электротехнические и информационные комплексы и системы. 2009. Т. 5. №4. С. 35-48.
  2. Lee J.B., Kalva H. The VC-1 and H.264 Video Compression Standards for Broadband Video Services. Springer. 2008
  3. Wenger S. H.264/AVC Over IP // IEEE Transactions on Circuits and Systems for Video Technology. Jul. 2003.V. 13. № 7. Р. 645 - 656.
  4. Wenger S., Stockhammer T., and Hannuksela M.M. RTP payload Format for H.264 Video, Internet Draft // Work in Progress. March 2003.
  5. Parrein B., Boulos F., Callet P., Guedon J. Priority Image and Video Encoding Transmission Based on a Discrete Radon Transform // IEEE Packet Video. 2007. Lausanne: Switzerland. 2007.
  6. Neve W.D., Lerouge S., Lambert P., Van de Walle R. A performance evaluation of MPEG-21 BSDL in the context of H.264/AVC Ghent University. Sint-Pietersnieuwstraat 41 B-9000. Ghent. Belgium
  7. Ries M. Video Quality Estimation for Mobile Video Streaming, Dissertation // Technischen Universitat Wien Fakultat fur Elektrotechnik und Informationstechnik. Wien. September 2008.
  8. Дворкович А. В. Эффективное кодирование видеоинформации в новом стандарте H.264/AVC // Труды НИИР. 2005.
  9. Abdul-Hameed O. Quality of Service for Multimedia Applications over Wireless Networks // VISNET II Summer School Istanbul. University of Surrey Guildford. Surrey. GU2 7XH. UK.
  10. Куликов Д.Л., Ватолин Д.С. Оценка качества работы видеодекодеров стандарта MPEG-2 при работе в ненадежной среде передачи данных // Труды. конф. «Graphicon-2006». 2006. C. 367-370.
  11. Шелухин О.И., Иванов Ю.А., Арсеньев А.В.Анализ алгоритмов обработки интерактивной видеоконференцсвязи в системах беспроводного доступа // Электротехнические и информационные комплексы и системы. 2009. Т. 5. № 2. С.17-27.
  12. Romer M.MPEG-4 Video Quality Analysis, Florida Atlantic University // Video Communications Project. Spring. 2004
  13. Richardson I.H.264 and MPEG-4 Video. Compression: Video Coding for Next-Generation. Multimedia. John Wiley & Sons. 2003.
  14. Information and Communication Technologies «ADAMANTIUM» // D4.4 - PQoS Models and Adaptation Mechanisms www.ict-adamantium.eu
  15. Rodriguez E.Robust Error Detection Methods for H.264/AVC Videos Master thesis. Universitat Politecnica de Catalunya. Vienna. 2008.
  16. KolkeriV. Error concealment techniques in H.264/AVC, for video transmission over wireless network. The University of Texas at Arlington. 2008
  17. Куликов Д.А. Методы маскирования искажений в видеопотоке после сбоев работы кодека (Дисс. ?. к.ф.-м. н.). МГУ им. М.В. Ломоносова. 2004.
  18. Быков Р.Е. Теоретические основы телевидения. СПб.: Изд-во «Лань». 1998.
  19. Шиманский Е.Ю. Разработка и исследование методов и устройств сокращения временной избыточности цифровых видеопотоков (Дисс. ?.. к. т. н.). ЛЭТИ. 2004.
  20. Шелухин О.И., Иванов Ю.А. Оценка качества передачи потокового видео в телекоммуникационных сетях с помощью программно-аппаратных средств // Электротехнические и информационные комплексы и системы. 2009. Т. 5. № 4. С. 48-56.
  21. http://ict.ewi.tudelft.nl/vcdemo