350 rub
Journal Nonlinear World №5 for 2009 г.
Article in number:
Research of a Nonlinear Refraction Mode for Nanostrukture Sitall
Authors:
A.H. Sultanov, I.V. Vinogradova, A.I. Salohov
Abstract:
Results of an experimental research factor refractions coarse-grained and nanocristall polycrystalline glass in linear and nonlinear modes of capacities are presented in article. The material polycrystalline glass (glass of litiy group) is chosen in view of reception possibility on its basis transparent an image-tsov, containing volume nanostructure inclusions. Unlike absolutely fragile quartz, polycrystalline glass possesses a plasticity zone. Measurement of factor refraction is spent with use the interferometer Mah-Zender at giving of powerful radiation of a rating (a nonlinear mode). In a linear mode rating radiation has been switched off. For narrowing of diameter of a light stain the objective was used. In linear area approximate conformity of values of an indicator of refraction for nanostructure and coarse-grained samples has been powerfully-stej revealed. In a nonlinear mode of refraction essential differences are found out. Spasmodic change of an indicator of refraction for nanostructure samples in area intensity a rating of an order 0,6 - 0,8 W/sm2 was revealed. Measurement of an indicator of refraction was spent on length of a wave of 1550 nanometers, and rating radiation moved or on 1546 nanometers, or on 980 nanometers. In both cases nanostructure it has appeared to polycrystalline glass it is inherent three characteristic areas of refraction - a sub-critical mode, area of jump and systematic growth of an indicator of refraction. Except change of the law of nonlinear refraction has been found out big disorder of values of factor of refraction in the third area. The assumption has been put forward that the disorder is connected with temperature not-stability nanostructure polycrystalline glass. The analysis of change of temperature at inclusion of radiation of a rating has shown an image its minor alteration, than on 0,01 degree of Celsius. The analysis of change of display of samples refraction is besides carried out at their heating on 10 degrees. Thus to that deviations of values of an indicator of refraction in absence of a signal on-rolling have not exceeded 0,00002. In the presence of a signal of a rating for nanostructure samples the disorder of values of the same level, as without heating took place. It has allowed to draw a conclusion that possible heating of the sample is not the essential factor responsible for observable disorder of values. Influence of degree of deformation on effect of nonlinear refraction for nanostructure samples has been analyzed. The influence of degree of deformation is revealed rather. If last comes nearer to the greatest at which the sample does not collapse yet, on the contrary, takes place high hundred results of measurements. If deformation degree is near on the middle from maximum the greatest disorder of a characteristic takes place. So the assumption that instability of parameters nanostructure polycrystalline glass is connected with low degree of deformation with appreciable аннигиляцией defects and a relaxation of intense areas has been made. The last are connected with features of technology of processing - intensive torsion under a high pressure. The relaxation occurs under the influence of external influence, in this case - rating radiations. Value of threshold intensity of the rating depends on deformation degree, dividing sub-critical and post-critical areas of nonlinear refraction also. In the conclusion the conclusion has been drawn on possibility of application of nanostructure polycrystalline glass with considerable degree of deformation for manufacturing of elements of devices of fiber optics
Pages: 360
References
  1. Султанов А.Х., Виноградова И.Л. Подход к построению коммутаторов оптических сигналов, управляемых оптическим излучением // Компьютерная оптика.2005. № 26. С. 56 - 64.
  2. Султанов А.Х., Усманов Р.Г., Виноградова И.Л. Сегмент системы передачи с усилителем EDFA // Датчики и системы. 2002. № 4. С. 21 - 33.
  3. Гиббс Х. Оптическая бистабильность. Управление света с помощью света / пер. с англ. М.: Мир. 1988. 520 с.
  4. Султанов А.Х., Канаков В.И., Виноградова И.Л. О результатах исследования спектра поглощения деформированных стекол с целью использования их в перспективных информационных технологиях. // Вычислительная техника и новые информационные технологии: Межвузовск. научн. сб. Уфа, Мин. общ. и ср. образ. РФ. УГАТУ. 2003. С. 35 - 42.
  5. Валиев Р.З., Александров И.В. Наноструктурные материалы, полученные интенсивной пластической деформацией. М.: Изд-во «Логос». 2000. 346 с.
  6. Химическая энциклопедия. В 5-ти томах: Полимерные - Трипсин / под ред. Н.С. Зефирова, Н.Н. Куклова. М.: Советская энциклопедия. 1995. Т. 4.
  7. Салихов А.И. Разработка интерференционных методов исследования для изучения параметров прозрачных нанокристаллических материалов: Дис - канд. техн. наук: 05.12.13. Защищена 05.09.2008; Утв.11.11.2008. Уфа. 2008. 139с.
  8. Матвеев А. Н. Оптика (Учеб. пособие для физ. спец. вузов). М.: Высшая школа. 1985.
  9. Квантовая электроника. Маленькая энциклопедия / Отв. ред. М.Е. Жаботинский. М.: Советская энциклопедия. 1969.
  10. Тухватуллин Р.А., Виноградова Л.Е., Виноградова И.Л., Ржевский С.П.. А.с. 1697035 СССР, МКИ5G 02 B 6/28. Волоконно-оптический разветвитель / Бюлл. № 45. 1991.
  11. Тухватуллин Р.А., Виноградова Л.Е., Виноградова И.Л. А.с. СССР № 1760494, МКИ5G 02 B 6/28 Волоконно-оптический разветвитель / Бюлл. № 33. 1992.