350 rub
Journal Nonlinear World №5 for 2009 г.
Article in number:
Polycorrelation Distributed Adaptive Signal Processing in a Presence of Non-Gaussian Interferences
Authors:
Sh.M. Chabdarov, A.F. Nadeev, R.R. Faizullin, E.N. Efimov, A. Adnan
Abstract:
Signal processing in a presence of non-Gaussian interferences have been considered. The purpose of this work is development of adaptive algorithm of signal processing in a presence of non-Gaussian interferences presented by poly-Gaussian models, at absence of the a priori information on values of probabilities coefficients of components of interference and appropriate parameters of Gaussian components. On the basis of the adaptive Bayesian approach and poly-Gaussian methods the generalized algorithm of signal processing in a presence of non-Gaussian interferences have been synthesized. The synthesized polycorrelative algorithm of signal processing combines the main properties, characteristic for poly-Gaussian algorithms, in particular: structurally the algorithm consists of the same parallel channels, in each of channels operations, characteristic for correlative algorithms are fulfilled, thus the main operation is a correlative integral. Irrespective of a degree of complexity of allocations of interferences, the algorithm contains a finite set of standard operations. The estimation of parameters non-Gaussian interference distribution is carried out by results of an average of statistics stored on the previous steps of Signal processing in the main trunk of algorithm, thus the adapting trunk is naturally built in structure of algorithm. Analysis of policorrelation adaptive algorithm by computer modeling have been realized. Results of modeling show an essential scoring on probability of an error synthesized poly-Gaussian adaptive algorithm in relation to correlative algorithm in the conditions of non-Gaussian interferences. The carried out analysis has confirmed working capacity and efficiency of the synthesized algorithm
Pages: 355
References
  1. Mahmoud. Cognitive Networks: Towards Self-Aware Networks, John Wiley and Sons, 2007.
  2. Чабдаров Ш.М., Трофимов А.Т. Полигауссовы представления произвольных помех и прием дискретных сигналов // Радиотехника и электроника. 1975. Т.20. №4. С.734 − 735.
  3. Чабдаров Ш.М., Закиров З.Г., Надеев А.Ф., Файзуллин Р.Р., Егоров А.Е. Адаптивный алгоритм разрешения многоэлементных сигналов // Телекоммуникации. 2003. №11. С.2 − 5.
  4. Репин В.Г., Тартаковский Г.П. Статистический синтез при априорной неопределенности и адаптация информационных систем. М.: Сов. радио. 1977. 432 с.
  5. Айвазян С.А., Бухштабер В.М., Енюков И.С., Мешалкин Л.Д. Прикладная статистика: Классификации и снижение размерности: Справ. изд. / под ред. С.А. Айвазяна. М.: Финансы и статистика. 1989. 607 с.