350 rub
Journal Nonlinear World №10 for 2009 г.
Article in number:
Observed Properties of Intracluster Gas in Rich Clusters of Galaxies
Authors:
I.K. Rozgacheva, I.B. Kuvshinova
Abstract:
Last ten years the interest to studying physical properties of intracluster gas in clusters of galaxies has grown. It is connected to accumulation of the observation data on the intracluster medium, and appeared in this connection an opportunity of the solution of fundamental problems of physics of galaxies. The observation facts which have been dis-covered due to development of extra-atmospheric methods of observations last third XX centuries, and conclusions from them are discussed. Note, that the mechanism of heating of interacluster gas, formation of cooling flow, and very low contents of cold gas remain unresolved questions of physics of rich clusters of galaxies. Their solution is actual for understanding of dynamics of clusters, and demands complex studying of properties of radiation of intracluster plasma. With this purpose the statistical analysis of properties of 170 rich clusters of galaxies from the catalogue of rich clusters of galaxies with cooling flows (I.K. Rozgacheva and I.B. Kuvshinova, 2005; I.B. Kuvshinova, 2009) is performed. The fact of existence of the correlations discovered earlier by other authors between x-ray luminosity and temperature of intracluster gas, velocity dispersion of galaxies and x-ray luminosity of intracluster gas in clusters is confirmed. New anticorrelation be-tween optical luminosity and x-ray luminosity of intracluster gas in clusters is discovered: . Clusters of galaxies form sequences with various values of parameter . Values of parameter for these sequences are close. Note, that clusters of galaxies have various properties. The discovered sequences are evidence that the mass of intracluster gas in various clusters can strongly differ.
Pages: 740-748
References

1.        Cavaliere A., Fusco-Fermiano R. X-rays from hot plasma in clusters of galaxies // Astron. and Astrophys. 1976. V. 49. P. 137 - 144.

2.       Soliger A., Tucker W.H. Relationship between X-ray luminosity and velocity dispersion in clusters of galaxies // Astrophys.J. 1972. V. 175. L107 - L111.

3.       Fabian A.C., Nulsen P.E.J. Subsonic accretion of cooling gas in clusters of galaxies // MNRAS, 1977, V. 180, P. 479 - 484.

4.       Fabian A.C., Ku W.Y.-M., Malin D.F. et al. The discovery of optical filaments surrounding the central galaxy in A496: Evidence for a cooling flow // MNRAS. 1981. V. 196. P. 35 - 37.

5.       Allen S.W., Fabian A.C.The impact of cooling flows on the  relation for the most luminous clusters // MNRAS. 1998.
V. 297. L57 - L62.

6.       Ferland G.J., Fabian A.C., Hatch N., Johnstone R.M. et al. The origin of molecular hydrogen emission in cooling-flow filaments // MNRAS. 2008. V. 386. L72 - L76.

7.       Böhrighenti H., Matsushita K., Churazov E.et al. The new emerging model for the structure of cooling cores in clusters of galaxies // Astron. and Astrophys. 2002. V. 382. P. 804 - 820.

8.       Ferland G.F., Fabian A.C., Hatch N.A. et al. The origin of molecular hydrogen emission in cooling-flow filaments // arXiv:astro-ph/0802.2535, 19.02.2008.

9.        Pistinner S., Shaviv G. A Possible Mechanism for the Formation of the Nebular Filaments in Cluster Cooling Flows // Astrophys. J. 1995. V. 446. L11 - L13.

10.    Mathews W.G., Brighenti F., Boute D.A. et al. Circulation Flows: Cooling Flows with Bubble Return // Astrophys. J. 2003. V. 596. P. 159 - 169.

11.     Reisenegger A., Miralda-Escudi J., Waxman F. Cooling flows and metallicity gradients in clusters of galaxies // Astrophys. J. 1996. V. 457. L11 - L14.

12.     Furusho T., Yamasaki N.Y., Ohashi T.Chandra Observation of the Core of the Galaxy Cluster AWM 7 // Astrophys. J. 2003.
V. 596. P. 181 - 189.

13.    Кувшинова И.Б.Каталог богатых скоплений с охлаждающими течениями / Деп. в ВИНИТИ РАН 20.04.09, №237-В2009 МПГУ. Москва 2009.

14.    Abell G.O., Corwin H.G., Olowin R.P. A catalog of rich clusters of galaxies // Astrophys. J. Sup. Ser. 1989. V. 70. P. 1 - 138.

15.    Branchesi M., Gioia I.M., Fanti C. et al. High redshift X-ray galaxy clusters. II. The  relationship revisited // arXiv: astro-ph 0706.3277, 01.02.2008.

16.     Розгачева И.К., Кувшинова И.Б. Фрактальная структура межгалактической среды в скоплениях галактик // Вестник МГУЛ. 2005. №4. C. 14 - 20.

17.     Гмурман В.Е. Теория вероятностей и математическая статистика. М.: Высшее образование. 2007.

18.    Спицер Л. Физические процессы в межзвездной среде. М.: Мир. 1981.

19.    Henry J.P., Arnaud K.A. A measurement of the mass fluctuation spectrum from the cluster X-ray temperature function // Astrophys. J. 1991. V. 372. P. 410 - 418.

20.    Edge A.C., Stewart G.C. EXOSAT observation of cluster of galaxies. I. The X-ray data // MNRAS. 1991. V. 252. P. 414 - 427.

21.    David L.P., Slyz A., Jones C. et al. A catalog of intracluster gas temperatures // Astrophys. J., 1993, V. 412. P. 479 - 488.

22.    White D.A., Jones C., Forman W. An investigation of cooling flow and general cluster properties from an X-ray image deprojection analysis of 207 clusters of galaxies // MNRAS. 1997. V. 292. P. 419 - 467.

23.    Markevich M. The relation and temperature function for nearby clusters revisited // Astrophys. J. 1998. V. 504. P. 27 - 44.

24.    Jones C., Forman W. Einstein observatory images of cluster of galaxies // Astrophys. J. 1999. V. 511. P. 65 - 83.