N.Yu. Gushan1
1 Financial University under the Government of the Russian Federation (Moscow, Russia)
1 249351@edu.fa.ru
Modern forestry faces the need to process huge amounts of spatio-temporal data coming from various sources: satellites, sensors, video surveillance. This creates challenges related to scalability, response speed, and information reliability when monitoring forest fires, logging, and other emergencies.
The objective of the study is to analyze the principles of operation of situation centers in forestry from the perspective of big data processing, as well as to conduct a comparative assessment of decision support methods.
The article examines the architecture and tasks of forest situation centers, provides examples of Russian and international implementations, and describes a hierarchical decision support model that takes computational constraints into account. A comparative analysis of multi-criteria evaluation methods (AHP and TOPSIS) in terms of computational efficiency under different conditions was conducted.
The conclusions and recommendations presented in this work can be used in the design and modernization of forestry situation centers, the selection of analytical methods in conditions of limited resources, and the integration of AI into environmental digital platforms.
Gushan N.Yu. Forestry situation centers: data processing and big data challenges. Neurocomputers. 2025. V. 27. № 6. P. 88−95. DOI: 10.18127/j19997493-202506-09 (in Russian).
- Situacionny`e centry` [E`lektronny`j resurs]. Sovzond. URL: https://sovzond.ru/services/situational-centers/ (data obrashheniya: 20.09.2025).
- Situacionny`j centr Minprirody` akkumuliruet informaciyu neskol`kix desyatkov podvedomstvenny`x IS [E`lektronny`j resurs]. Connect WIT 2022. URL: https://www.connect-wit.ru/situatsionnyj-tsentr-minprirody-akkumuliruet-informatsiyu-neskolkih-desyatkov-podvedomstvennyh-is.html (data obrashheniya: 20.09.2025).
- UNECE. Tendencii cifrovizacii lesnogo sektora [E`lektronny`j resurs]. land.unece.org, 2023. URL: https://land.unece.org/ forests/ru/knowledge-hub/forest-information-systems/trends-digitalization-forest-sector (data obrashheniya: 20.09.2025).
- «Lesoxranitel`». Sistema distancionnogo monitoringa i upravleniya [E`lektronny`j resurs]. lesohranitel.ru, 2025. URL: https://lesohranitel.ru/ (data obrashheniya: 20.09.2025).
- Simankov V.S., Teplouxov S.V. Intellektualizaciya situacionnogo centra putem podbora metodov i algoritmov II s uchyotom neopredelyonnosti isxodnoj informacii [E`lektronny`j resurs]. Vestnik Ady`gejskogo gos. un-ta. Ser. 4: Estestvenno-matem. i texn. nauki, № 1. 2020. URL: https://cyberleninka.ru/article/n/intellektualizatsiya-situatsionnogo-tsentra-putem-podbora-metodov-i-algoritmov-iskusstvennogo-intellekta-s-uchetom-neopredelennosti (data obrashheniya: 20.09.2025).
- Avtomatizirovannaya informacionnaya sistema «Avialesooxrana» [E`lektronny`j resurs]. FBU «Avialesooxrana». URL: https://aviales.ru/default.aspx?textpage=117 (data obrashheniya: 20.09.2025).
- Gao W., Qiu Q., Yuan C. Forestry Big Data: A Review and Bibliometric Analysis [E`lektronny`j resurs]. Forests. 2022. DOI: 10.3390/f13101549 (data obrashheniya: 20.09.2025).
- Vagizov M. et al. Visual Digital Forest Model Based on Remote Sensing Data and Forest Inventory Data. Remote Sensing. 2021. DOI: 10.3390/rs13204092
- Nguyen D. et al. PRISM: A decision support system for forest planning. Computers & Electronics in Agriculture, 2022. DOI: /10.1016/j.envsoft.2022.105515
- Yadav N. et al. Decision Support Systems in Forestry and Tree-Planting. MDPI. 2024. https://doi.org/10.3390/land13020230
- Kochkarov R.A., Chirov D.S., Timoshenko A.V., Kazancev A.M. Model` prostranstvenno-raspredelennoj informacionnoj sistemy` neprery`vnogo monitoringa s predfraktal`noj dinamicheskoj strukturoj v usloviyax vozdejstviya destabiliziruyushhix faktorov. T-Comm: Telekommunikacii i transport. 2025. T. 19. № 1. S. 4–12. DOI: 10.36724/2072-8735-2025-19-1-4-12 (data obrashheniya: 20.09.2025).
- Kochkarov R.A., Baldy`chev M.T., Kazancev A.M. i dr. Algoritm ocenki strukturno-funkcional`noj ustojchivosti i celostnosti geterogennoj seti peredachi danny`x prostranstvenno-raspredelennoj sistemy` monitoring. Trudy` MAI. 2024. № 137. EDN: IJZRAI.
- Shevczov V.A., Kazancev A.M., Timoshenko A.V. i dr. Pokazatel` strukturnoj e`ffektivnosti upravleniya informacionny`m vzaimodejstviem v geterogennoj seti peredachi danny`x prostranstvenno-raspredelennoj sistemy` monitoring. Vestnik Voronezhskogo gosudarstvennogo texnicheskogo universiteta. 2024. T. 20. № 2. S. 124–131. DOI: 10.36622/1729-6501.2024. 20.2.019 (data obrashheniya: 20.09.2025).
- Shevnina Yu.S., Ryabov P.E., Prokopchina S.V., Kochkarov R.A. Podxody` k prognozirovaniyu izmeneniya sostoyaniya obespechi-vayushhix komponentov informacionno-upravlyayushhej sistemy`. Modelirovanie, optimizaciya i informacionny`e texnologii. 2024. T. 12. № 2(45). DOI: 10.26102/2310-6018/2024.45.2.023 (data obrashheniya: 20.09.2025).
- Kochkarov R.A., Kochkarov A.A. Teoretiko-grafovy`j algoritm dinamicheskogo naznacheniya sredstv sistemy` neprery`vnogo mo-nitoringa. Uspexi sovremennoj radioe`lektroniki. 2023. T. 77. № 9. S. 44-50. DOI: 10.18127/j20700784-202309-05 (data ob-rashheniya: 20.09.2025).
- Timoshenko A.V., Kochkarov R.A., Kochkarov A.A. Vy`delenie uslovij razreshimosti NP-polny`x zadach dlya klassa predfraktal`ny`x grafov. Modelirovanie i analiz informacionny`x sistem. 2021. T. 28, № 2. S. 126-135. DOI: 10.18255/1818-1015-2021-2-126-135 (data obrashheniya: 20.09.2025).
- Kazancev A.M., Kochkarov R.A., Timoshenko A.V., Sy`chugov A.A. Nekotory`e podxody` k ocenke processa funkcionirovaniya strukturno-dinamicheskix sistem monitoringa v usloviyax vneshnix vozdejstvij. Modelirovanie, optimizaciya i informacionny`e texnologii. 2021. T. 9. № 4(35). DOI: 10.26102/2310-6018/2021.35.4.005 (data obrashheniya: 20.09.2025).
- Kochkarov A.A., Yaczkin D.V., Kochkarov R.A. Primenenie metodov teorii prosachivaemosti dlya resheniya zadach potokovogo pla-nirovaniya v transportny`x setyax s uchetom ix strukturnoj dinamiki. Teoreticheskaya i prikladnaya e`konomika. 2021. № 1. S. 13–20. DOI: 10.25136/2409-8647.2021.1.34965 (data obrashheniya: 20.09.2025).
- Chernoritskii S.S., Gushan N.Y., Khuranova K.M. Assessment of tree biomass using remote sensing techniques: validation at the terri-tory of the forest lake educational and recreational complex. Environmental Studies and Protection Issues – 2024: Proceedings of the International Youth Scientific and Academic Conference, Moscow, April 19, 2024. M.: RUDN University, 2024. P. 74–81.

