350 rub
Journal Neurocomputers №6 for 2025 г.
Article in number:
A method for optimizing the actions of an operator of a space monitoring radar station based on graph representation
Type of article: scientific article
DOI: https://doi.org/10.18127/j19998554-202506-08
UDC: 621.865.8
Authors:

S.V. Matseevich1, A.K. Usacheva2, A.S. Zakharov3

1–3 Financial University under the Government of the Russian Federation (Moscow, Russia)
1 cvmac@mail.ru; 3 zakharov.as17@physics.msu.ru;

Abstract:

An increase in the number of satellites in near-Earth space leads to an increase in the information processed by radar stations. At the same time, integration and decision-making based on the results of information processing lies with the dispatchers on duty. In the interests of reducing the level of cognitive load affecting operators, it is proposed to formalize a method for optimizing the actions of an operator of a space monitoring radar station based on a graphical representation. The analysis of the application of artificial intelligence methods, in particular machine learning and neural networks, in decision support systems is carried out. For the analysis of textual regulatory information, the large open source BLOOM language model has been selected, which makes it possible to form a graph of the sequence of actions. To analyze and optimize the graph, an original methodology and algorithm for optimizing the sequence of operator actions have been developed, which makes it possible to increase the efficiency of his work by improving decision support methods.

Pages: 77-87
For citation

Matseevich S.V., Usacheva A.K., Zakharov A.S. A method for optimizing the actions of an operator of a space monitoring radar station based on graph representation. Neurocomputers. 2025. V. 27. № 6. P. 77−87. DOI: 10.18127/j19997493-202506-08 (in Russian).

References
  1. Tolsty`x A.V. Obosnovanie neobxodimosti informacionnoj podderzhki operatora radiolokacionnoj avtomatizirovannoj izmeritel`no-informacionnoj sistemy`, funkcioniruyushhego v usloviyax neopredelennosti / Sb. st. po materialam VNTK, posvyashhennoj Dnyu obrazovaniya vojsk svyazi. Voronezh: VUNCz VVS «VVA». 2015. S. 214–216.
  2. Sadovnikova N.P., Pary`gin D.S., Shherbakov M.V. Sistemy` podderzhki prinyatiya reshenij: ucheb. posobie. Volgograd: VolgGTU. 2021. 108 s.
  3. Larichev O.I., Petrovskij A.B. Sistemy` podderzhki prinyatiya reshenij: sovremennoe sostoyanie i perspektivy` razvitiya. Itogi nauki i texniki. Teoriya veroyatnostej. Matematicheskaya statistika. Teoreticheskaya kibernetika. 1987. T. 21. S. 131–164.
  4. Zyuzina A.D., Maceevich S.V., Voronin A.S., Mochalov M.N. Sovremenny`e sistemy` vizualizacii tekushhej obstanovki v ZRK «Pe`triot» i integrirovannoj sisteme boevogo upravleniya IBCS. Vestnik Vozdushno-kosmicheskoj oborony`. 2023. №4 (40). S. 119–126.
  5. Savenkov P.A. Ispol`zovanie metodov i algoritmov mashinnogo obucheniya v sistemax podderzhki prinyatiya upravlencheskix reshenij. Izvestiya TulGU. Texnicheskie nauki. 2019. № 2.
  6. Mixajlova S.S., Maceevich S.V., Zaxarov A.S., Sharipov D.A., Petrovskij A.V. Raschet pokazatelej gotovnosti vy`ezdny`x brigad na osnove modeli kompleksny`x avarij na ob``ektax kriticheskoj infrastruktury`. Nelinejny`j mir. 2025. T. 23. № 3. S. 15–24. DOI: https://doi.org/10.18127/j20700970-202503-03
  7. Samojlenko V.S., Fedotova A.Yu. Arxitektura intellektual`noj sistemy` podderzhki prinyatiya reshenij. Mezhdunarodny`j nauchno-issledovatel`skij zhurnal. 2024. № 8 (146). URL: https://research-journal.org/archive/8-146-2024-august/10.60797/IRJ.2024.146.10 (data obrashheniya: 13.02.2025). DOI: 10.60797/IRJ.2024.146.10
  8. Konev K.A. Mashinnoe obuchenie dlya podderzhki prinyatiya reshenij v sfere kachestva na promy`shlennom predpriyatii. E`konomika. Informatika. 2023. № 3.
  9. Ahmad, S.F., Han, H., Alam, M.M. et al. Impact of artificial intelligence on human loss in decision making, laziness and safety in education. Humanit Soc Sci Commun 10. 311 (2023). https://doi.org/10.1057/s41599-023-01787-8
  10. Samojlenko V.S., Fedotova A.Yu. Arxitektura intellektual`noj sistemy` podderzhki prinyatiya reshenij. Mezhdunarodny`j nauchno-issledovatel`skij zhurnal. 2024. № 8 (146). URL: https://research-journal.org/archive/8-146-2024-august/10.60797/IRJ.2024.146.10 (data obrashheniya: 13.02.2025). DOI: 10.60797/IRJ.2024.146.10
  11. Kroshilin A.V., Babkin A.V., Kroshilina S.V. Osobennosti postroeniya sistem podderzhki prinyatiya reshenij na osnove nechyotkoj logiki. Informatika, telekommunikacii i upravlenie. 2010. № 2 (97).
  12. Maceevich S.V., Zaxarov A.S., Vladko U.A., Zyuzina A.D., Mochalov M.N. Primenenie pokazatelya kognitivnoj nagruzki graficheskogo e`lementa dlya obosnovaniya trebovanij k sisteme vizualizacii RLS dal`nego obnaruzheniya. Nauchnaya vizualizaciya. 2024. 16.3: 87–96. DOI: 10.26583/sv.16.3.09
Date of receipt: 13.10.2025
Approved after review: 22.10.2025
Accepted for publication: 30.10.2025