350 rub
Journal Neurocomputers №5 for 2025 г.
Article in number:
Artificial intelligence as a tool for improving the efficiency of the IC packaging process
Type of article: scientific article
DOI: https://doi.org/10.18127/j19998554-202505-06
UDC: 004.896
Authors:

A.O. Vasyutkin1
1 MIREA – Russian Technological University (Moscow, Russia)

1 vasyutkin.a.o@edu.mirea.ru

Abstract:

Modern systems for designing semiconductor packages and integrated circuits are facing increasingly complex challenges. These challenges often require significant time investments and repeated operations, leading to a need for more efficient and automated solutions.

The goal of the article is to explore the potential of artificial intelligence (AI) techniques, such as multilayer neural networks, generative adversarial networks, reinforcement learning and machine learning, to improve design automation and reduce labor intensity in these processes.

The article explores the potential applications of AI techniques in designing a housing and semiconductor crystal, followed by the as-sembly of a microchip, such as housing matrix editors, component database management systems, graphic legend editors, and circuit board editors. Models corresponding to its tasks have been proposed for each subsystem: multilayer perceptrons for categorization and generative neural networks for optimizing visual representation.

The paper delves into the potential use cases for AI in each of these applications, encompassing automatic object generation, intelligent analysis, and quality control measures.

Pages: 48-55
For citation

Vasyutkin A.O. Artificial intelligence as a tool for improving the efficiency of the IC packaging process. Neurocomputers. 2025. V. 27. № 5. P. 48–55. DOI: https://doi.org/10.18127/j19998554-202505-06 (in Russian)

References
  1. Huajie Sh. Research on the development and application of artificial intelligence in computer-aided design (CAD) systems. Applied and Computational Engineering. 2024. № 106. P. 131–136. DOI:10.54254/2755-2721/106/20241314.
  2. Zubkova T., Tokareva M. The technique of automated design of technological objects with the application of artificial intelligence elements. Deterministic Artificial Intelligence. 2020. DOI: 10.5772/intechopen.88295.
  3. Savostin D., Kirichenko E., Sharanov A. Budushchie perspektivy avtomatizirovannogo proektirovaniya (SAPR) s tochki zreniya iskusstvennogo intellekta i 3D-pechati. Izvestiya TulGU. Tekhnicheskie nauki. 2023. № 2. S. 328–331. (in Russian)
  4. Hunde B., Woldeyohannes A. Future prospects of computer-aided design (CAD) – A review from the perspective of artificial intelligence (AI), extended reality, and 3D printing. Results in Engineering. 2022. V. 14. DOI: 10.1016/j.rineng.2022.100478.
  5. Huang G. et al. Machine learning for electronic design automation: A survey. ACM Transactions on Design Automation of Electronic Systems (TODAES). 2021. V. 26. № 5. P. 1–46.
  6. Markusenko N.S., Grishechkin E.D., Nastenko E.A. Primenenie metodov iskusstvennogo intellekta v SAPR. Sb. materialov 59-j nauch. konf. aspirantov, magistrantov i studentov BGUIR «Elektronnye sistemy i tekhnologii». Minsk, 17–21 aprelya 2023 g. Minsk: Belorusskij gosudarstvennyj universitet informatiki i radioelektroniki. 2023. S. 241–242. (in Russian)
  7. Müller J., Panarotto M., Ola I. Function model based generation of CAD model variants. Conference CAD'20. 2020. P. 204–208. DOI: 10.14733/cadconfP.2020.204-208.
  8. Heikkinen T., Johansson J., Elgh F. Review of CAD-model capabilities and restrictions for multidisciplinary use. Computer-aided Design & Applications. 2018. V. 15. № 4. P. 509–519. DOI: 10.1080/16864360.2017.1419639.
  9. Schabacker M. User defined features (UDF). Solid Edge 2023 für Fortgeschrittene. 2023. P. 95–98. DOI: 10.1007/978-3-658-41086-5_10.
  10. Marx J., Schrage D., Marvis D. An application of artificial intelligence for computer-aided design and manufacturing. 2000. DOI: 10.1007/ 978-3-642-79654-8_81.
  11. Ng K.W., Poynting S. Artificial intelligence in CAD/CAM. 1st National CAD/CAM Conference 1995: New and Emerging Technologies for Industrial Competitiveness. 1995.
  12. Madan A. et al. Integration of AI in computer aided design and manufacturing. International Research Journal of Modernization in Engineering Technology and Science. 2023. V. 5. № 12. P. 979–985.
  13. Goodfellow I., Bengio Y., Courville A. Deep learning. The MIT Press. 2016.
  14. Bishop C. Pattern recognition and machine learning. Springer. 2006.
  15. Murphy K. Machine learning: A probabilistic perspective. MIT Press. 2012.
  16. Lecun Y., Bottou L., Bengio Y., et al. Gradient-based learning applied to document recognition. Proceedings of the IEEE. 1998. V. 86. № 11. P. 2278–2324. DOI: 10.1109/5.726791.
  17. Dychkov I. Svertochnye nejronnye seti. Tendentsii razvitiya nauki i obrazovaniya. 2021. № 73-1. S. 38–41. DOI: 10.18411/lj-05-2021-08. (in Russian)
  18. Goodfellow I. et al. Generative adversarial networks. Advances in Neural Information Processing Systems. 2014. № 3. DOI: 10.1145/ 3422622.
  19. Taganov A.I. Nejrosetevye sistemy iskusstvennogo intellekta v zadachakh obrabotki izobrazhenij. M.: Telekom. 2016. (in Russian)
  20. Nikolenko S., Kadurin A., Arkhangel'skaya E. Glubokoe obuchenie. Pogruzhenie v mir nejronnykh setej. SPb.: Izdatel'skij dom «Piter». 2018. (in Russian)
Date of receipt: 09.06.2025
Approved after review: 30.06.2025
Accepted for publication: 23.09.2025