A.A. Solodnyakov1, M.A. Krasnobaev2, A.V. Arkhipov3, D.A. Zakharikov4, K.V. Selivanov5
1–5 Bauman Moscow State Technical University (Moscow, Russia)
1 info@radiotec.ru
In modern mass production of printed circuit boards (PCB), quality control is a critically important task. Errors made by operators during manual inspection can lead to defective products passing through, significantly increasing correction costs and jeopardizing the reliability of the final product. This creates a demand for the development and implementation of automated defect detection systems capable of improving the speed and accuracy of quality control.
The aim of the article is to explore the potential of using the YOLOv4 architecture for automatic defect detection on PCBs during visual inspection. This includes developing data preparation methods, training the model, and evaluating its effectiveness under real production conditions.
The study results demonstrate that YOLOv4 achieves high accuracy and speed in detecting various types of PCB defects. Experimental findings show that implementing this technology significantly reduces the time required for quality control and decreases the likelihood of missing defects.
The practical significance of this work lies in the applicability of the developed methods in industrial settings, which can significantly enhance the quality control process at all stages of PCB production. Automating this process will reduce the impact of human factors and improve the overall efficiency of the production cycle.
Solodnyakov A.A., Krasnobaev M.A., Arkhipov A.V., Zakharikov D.A., Selivanov K.V. Application of YOLOv4 for defect detection on printed circuit boards: Methods, training, and results. Neurocomputers. 2025. V. 27. № 5. P. 23–34. DOI: https://doi.org/10.18127/ j19998554-202505-03 (in Russian)
- Makushina N.V., Sergeeva M.D. Analiz defektov metallizirovannykh otverstij pechatnykh plat. Proektirovanie i tekhnologiya elektronnykh sredstv. 2018. № 1. S. 3–12. (in Russian)
- Markelov V.V., Kabaeva A.S. Upravlenie kachestvom elektronnykh sredstv. T. 2. M.: Izd-vo MGTU im. N.E. Baumana. 2014. (in Russian)
- Buyanov A.A., Vlasov A.I., Gridnev V.N. The neuronet hardware and software integrated system for defectoscopy of printed circuits based on microsections. Sb. tezisov dokladov 3-j mezhdunar. konf. «Komp'yuternye metody i obratnye zadachi v nerazrushayushchem kontrole i diagnostike». 2002. S. 71.
- Ronneberger O., Fischer P., Brox T. U-Net: Convolutional networks for biomedical image segmentation. arXiv preprint arXiv:1505.04597. 2015.
- Tan M., Le Q.V. EfficientNet: Rethinking model scaling for convolutional neural networks. arXiv:1905.11946 [cs.LG]. DOI: 10.48550/arXiv. 1905.11946.
- Viryasova A.Yu., Vlasov A.I., Gladkikh A.A. Nejrosetevye metody defektoskopii integral'nykh struktur. Nejrokomp'yutery: razrabotka, primenenie. 2019. № 2. S. 54–67. (in Russian)
- Buyanov A.I., Vlasov A.I., Zagoskin A.V. Primenenie nejrosetevykh metodov pri defektoskopii pechatnykh plat. Nejrokomp'yutery: razrabotka, primenenie. 2002. № 3. S. 42–70. (in Russian)
- Panfilova S.P., Vlasov A.I., Gridnev V.N., Chervinskij A.S. Beskontaktnyj teplovoj kontrol' izdelij elektronnoj tekhniki. Proizvodstvo elektroniki. 2007. № 3. S. 25–30. (in Russian)
- Panfilova S.P., Vlasov A.I., Gridnev V.N., Chervinskij A.S. Beskontaktnyj teplovoj kontrol' elektronno-vychislitel'nykh sredstv. Tekhnologiya i konstruirovanie v elektronnoj apparature. 2007. № 6. S. 42–49. (in Russian)
- Gridnev V.N., Sergeeva M.D., Chebova A.I. Linejnye modeli raspoznavaniya teplovizionnykh izobrazhenij neispravnostej elektronnykh yacheek. Kontrol'. Diagnostika. 2014. № 8. S. 57–66. (in Russian)
- Aver'yanikhin A.E., Vlasov A.I., Evdokimova E.V. Ierarkhicheskaya piramidal'naya subdiskretizatsiya v glubokikh svertochnykh setyakh dlya raspoznavaniya vizual'nykh obrazov. Nejrokomp'yutery: razrabotka, primenenie. 2021. T. 23. № 1. S. 17–31. (in Russian)
- Szegedy C., Liu W., Jia Y., et al. Going deeper with convolutions. CoRR. abs/1409.4842. 2014.
- Long J., Shelhamer E., Darrell T. Fully convolutional networks for semantic segmentation. IEEE Conference on Computer Vision and Pattern Recognition. 2015. P. 3431–3440.
- Ren S., He K., Girshick R., et al. Faster R-CNN: Towards realtime object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2017. V. 39. № 6. P. 1137–1149.
- Liu Ch., Jiang X., Ding H. Instance-specific feature propagation for referring segmentation. arXiv:2204.12109v1. 2022.
- Zebari R.R., Abdulazeez A.M., Zeebaree D.Q., et al. A comprehensive review of dimensionality reduction techniques for feature selection and feature extraction. Journal of Applied Science and Technology Trends. 2020. V. 1. № 2. P. 56–70.
- Christian S., Sergey I., Vincent V., et al. Inception-v4, Inception-ResNet and the impact of residual connections on learning. arXiv:1602. 07261v2. 2016.
- Gao H., Zhuang L., van der Maaten L., et al. Densely connected convolutional networks. arXiv:1608.06993v5. 2018.
- Krizhevsky A., Sutskever I., Hinton G.E. ImageNet classification with deep convolutional neural networks. Communications of the ACM. 2017. V. 60. № 6. P. 84–90.
- Simonyan K., Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556v6. 2015.
- Szegedy C., Liu W., Jia Y., et al. Going deeper with convolutions. CoRR. abs/1409.4842. 2014.
- Lin T.Y., Maire M., Belongie S., et al. Microsoft coco: Common objects in context. European Conference on Computer Vision. 2014. Springer. P. 740–755.
- Kingma D.P., Ba J. Adam: A method for stochastic optimization. arXiv:1412.6980. 2014.
- Phan T.H., Yamamoto K. Resolving class imbalance in object detection with weighted cross entropy losses. arXiv:2006.01413. 2020.
- Cheng B., Girshick R., Dollar P., et al. Facebook AI research (FAIR) boundary IoU: Improving object-centric image segmentation evaluation. arXiv:2103.16562v1. 2021.
- He K., Gkioxari G., Dollar P., et al. Mask R-CNN. Proceedings of the IEEE International Conference on Computer Vision. 2017. P. 2961–2969.
- Azad R., Khosravi N., Merhof D. SMU-Net: Style matching U-Net for brain tumor segmentation with missing modalities. arXiv:2204. 02961v1. 2022.
- Vlasov A.I., Zav'yalov N.V., Selivanov K.V., Skal'chenkov I.I. Primenenie nejronnykh setej v obnaruzhenii defektov pechatnykh plat. Nejrokomp'yutery: razrabotka, primenenie. 2022. T. 24. № 6. S. 5–19. (in Russian)

