350 rub
Journal Neurocomputers №3 for 2023 г.
Article in number:
Applied methods and algorithms for the technology of "digital twins" in personalized medicine
Type of article: overview article
DOI: https://doi.org/10.18127/j19998554-202303-03
UDC: 004.891
Authors:

S.S. Zhumazhanova1, N.A. Alekseenko2, E.V. Sheveleva3

1–3 Omsk State Technical University (Omsk, Russia)

Abstract:

Problem setting. Currently, experts in the field of "Smart Healthcare" are successfully developing one of the advanced technologies of personalized medicine – the technology of "digital twins". A digital twin is a virtual model of a physical object that has a bidirectional data exchange between a physical object and its corresponding twin. In the near future, digital twins will be able to make a large-scale transformation in medicine, in particular, improve the possibilities of diagnosis, monitoring and treatment of patients, reduce associated costs, and also lead to the creation of more personalized treatment methods. At the same time, the creation of digital twins in medicine is complicated by the fact that the simulated objects (organs and systems of human life-activity) are complex living systems influenced by many external and internal factors. In this regard, it seems appropriate to study and summarize the world experience of experimental research of digital twins in the field of healthcare.

Target. To review the use of digital twins for personalized medicine with conclusions about the directions, prospects and problems of their creation and use.

Results. A comprehensive review of publications is presented to identify the methods and algorithms used, including those based on artificial intelligence systems, to create digital twins; conclusions are drawn about possible directions of their development, including using thermographic images of the human face and body.

Practical significance. The results of the review allow us to visualize the current state in the development of digital twins and the prospects for their development in personalized medicine, as well as to identify the main reasons that hinder their widespread implementation. The status of research, applied concepts, key and auxiliary methods and algorithms are demonstrated. Recommendations for future developments of digital twins are outlined.

Pages: 41-55
For citation

Zhumazhanova S.S., Alekseenko N.A., Sheveleva E.V. Applied methods and algorithms for the technology of "digital twins" in personalized medicine. Neurocomputers. 2023. V. 25. № 3. Р. 41-55. DOI: https://doi.org/10.18127/j19998554-202303-03 (In Russian)

References
  1. Javaid M., Haleem A., Singh R.P., Suman R., Gonzalez E.S. Understanding the adoption of Industry 4.0 technologies in improving environmental sustainability. Sustainable Operations and Computers. 2022. V. 3. P. 203–217. DOI 10.1016/j.susoc.2022.01.008.
  2. Belousov V.V., Druzhinina O.V., Korepanov E.R., Makarenkova I.V., Maksimova V.V. An approach to assessing the technical condition of elements and nodes of transport systems using neural network modeling methods and digital twins technology. Neurocomputers. 2021. V. 23. № 5. P. 5–20. DOI 10.18127/j19998554-202105-01. (In Russian)
  3. Digital Twin Market worth $73.5 billion by 2027. Electronic resource. Access mode: https://www.marketsandmar­kets.com/PressReleases/digital-twin.asp, date of reference 26.07.2022.
  4. Digital Twin Market Size, Trends, Growth & Forecast [2030]. Electronic resource. Access mode: https://www.fortunebusi­nessinsights.com/digital-twin-market-106246, date of reference: 26.07.2022.
  5. Emerging Technologies: Revenue Opportunity Projection of Digital Twins. Electronic resource. Access mode: https://www.gartner.com/en/documents/4011590, date of reference: 26.07.2022.
  6. Bazaz S.M., Lohtander M., Varis J. 5-Dimensional Definition for a Manufacturing Digital Twin. Procedia Manufacturing. 2019. V. 38.
    P. 1705–1712. DOI 10.1016/j.promfg.2020.01.107.
  7. Kamel Boulos M.N., Zhang P. Digital Twins: From Personalised Medicine to Precision Public Health. Journal of Personalized Medicine. 2021. V. 11. № 8. P. 745. DOI 10.3390/jpm11080745.
  8. The rise of the digital twin: how healthcare can benefit. Electronic resource. Access mode: https://www.philips.com/a-w/about/news/archive/blogs/innovation-matters/20180830-the-rise-of-the-digital-twin-how-healthcare-can-benefit.html, date of reference: 26.07.2022.
  9. An G., Cockrell C. Drug Development Digital Twins for Drug Discovery, Testing and Repurposing: A Schema for Requirements and Development. Frontiers in Systems Biology. 2022. V. 2. P. 928387. DOI 10.3389/fsysb.2022.928387.
  10. Dhamdhere P., Harmsen J., Hebbar R., Mandalapu S., Mehra A., Rajan S. ELPP 2016: Big Data for Healthcare. Berkeley Engineering. P. 37.
  11. Ahmed M.N., Toor A.S., O’Neil K., Friedland D. Cognitive Computing and the Future of Health Care Cognitive Computing and the Future of Healthcare: The Cognitive Power of IBM Watson Has the Potential to Transform Global Personalized Medicine. IEEE Pulse. 2017. V. 8. № 3. P. 4–9. DOI 10.1109/MPUL.2017.2678098.
  12. Volkov I., Radchenko G., Tchernykh A. Digital Twins, Internet of Things and Mobile Medicine: A Review of Current Platforms to Support Smart Healthcare. Programming and Computer Software. 2021. V. 47. № 8. P. 578–590. DOI 10.1134/S0361768 821080284.
  13. How a virtual heart could save your real one. Electronic resource. Access mode: https://www.philips.com/a-w/about/news/ar-chive/blogs/innovation-matters/20181112-how-a-virtual-heart-could-save-your-real-one.html, date of reference: 26.07.2022.
  14. Marchal T. Personalizing healthcare. 2018. P. 50.
  15. Jung A., Gsell M.A.F., Augustin C.M., Plank G. An Integrated Workflow for Building Digital Twins of Cardiac Electromechanics-A Multi-Fidelity Approach for Personalising Active Mechanics. Mathematics (Basel). 2022. V. 10. № 5. P. 823. DOI 10.3390/math10050823.
  16. Gillette K., Gsell M.A.F., Prassl A.J., Karabelas E., Reiter U., Reiter G., Grandits T., Payer C., Štern D., Urschler M., Bayer J.D., Augustin C.M., Neic A., Pock T., Vigmond E.J., Plank G. A Framework for the generation of digital twins of cardiac electrophysiology from clinical 12-leads ECGs. Medical Image Analysis. 2021. V. 71. P. 102080. DOI 10.1016/j.media.2021.102080.
  17. Prodeau M., Drumez E., Duhamel A., Vibert E., Farges O., Lassailly G., Mabrut J.Y., Hardwigsen J., Régimbeau J.M., Soubrane O., Adam R., Pruvot FR., Boleslawski E. An ordinal model to predict the risk of symptomatic liver failure in patients with cirrhosis undergoing hepatectomy. Journal of Hepatology. 2019. V. 71. № 5. P. 920–929. DOI 10.1016/j.jhep.2019.06.003.
  18. Golse N., Joly F., Combari P., Lewin M., Nicolas Q., Audebert C., Samuel D., Allard M.A., Sa Cunha A., Castaing D., Cherqui D., Adam R., Vibert E., Vignon-Clementel I.E. Predicting the risk of post-hepatectomy portal hypertension using a digital twin: A clinical proof of concept. Journal of Hepatology. 2021. V. 74. № 3. P. 661–669. DOI 10.1016/j.jhep.2020.10.036.
  19. Rao D., Mane S. Digital Twin approach to Clinical DSS with Explainable AI. arXiv:1910.13520. arXiv. 2019.
  20. Hernigou P., Olejnik R., Safar A., Martinov S., Hernigou J., Ferre B. Digital twins, artificial intelligence, and machine learning technology to identify a real personalized motion axis of the tibiotalar joint for robotics in total ankle arthroplasty. International Orthopaedics. 2021. V. 45. № 9. P. 2209–2217. DOI 10.1007/s00264-021-05175-2.
  21. Chakshu N.K., Carson J., Sazonov I., Nithiarasu P. A semi-active human digital twin model for detecting severity of carotid stenoses from head vibration-A coupled computational mechanics and computer vision method. Journal for Numerical Methods in Biomedical Engineering. 2019. V. 35. № 5. P. e3180. DOI 10.1002/cnm.3180. 
  22. Walsh J.R., Smith A.M., Pouliot Y., Li-Bland D., Loukianov A., Fisher C.K. Generating Digital Twins with Multiple Sclerosis Using Probabilistic Neural Networks. bioRxiv 2020.02.04.934679. DOI 10.1101/2020.02.04.934679. 
  23. Shamanna P., Saboo B., Damodharan S., Mohammed J., Mohamed M., Poon T., Kleinman N., Thajudeen M. Reducing HbA1c in Type 2 Diabetes Using Digital Twin Technology-Enabled Precision Nutrition: A Retrospective Analysis. Diabetes Therapy. 2020. V. 11. № 11.
     P. 2703–2714. DOI 10.1007/s13300-020-00931-w. 
  24. Shamanna P., Joshi S., Shah L., Dharmalingam M., Saboo B., Mohammed J., Mohamed M., Poon T., Kleinman N., Thajudeen M., Keshavamurthy A. Type 2 diabetes reversal with digital twin technology-enabled precision nutrition and staging of reversal: a retrospective cohort study. Clinical Diabetes and Endocrinology. 2021. V. 7. № 1. P. 21. DOI 10.1186/s40842-021-00134-7. 
  25. Chakshu N.K., Sazonov I., Nithiarasu P. Towards enabling a cardiovascular digital twin for human systemic circulation using inverse analysis. Biomechanics and Modeling in Mechanobiology. 2021. V. 20. № 2. P. 449–465. DOI 10.1007/s10237-020-01393-6.
  26. Hernigou P., Safar A., Hernigou J., Ferre B. Subtalar axis determined by combining digital twins and artificial intelligence: influence of the orientation of this axis for hindfoot compensation of varus and valgus knees. International orthopaedics. 2022. V. 46. № 5. P. 999–1007. DOI 10.1007/s00264-022-05311-6.
  27. Satybaldieva F.A., Bodin O.N., Edemsky M.V., Ozhikenov K.A., Kramm M.N., Bodin A.Yu. Screening cardiodiagnostic information system based on modern technologies. Models, systems, networks in economics, technology, nature and society. 2022. № 2(42). P. 63–74. DOI 10.21685/2227-8486-2022-2-5. (In Russian)
  28. Petrova-Antonova D., Spasov I., Krasteva I., Manova I., Ilieva S. A Digital Twin Platform for Diagnostics and Rehabilitation of Multiple Sclerosis. Computational Science and Its Applications. 2020. V. 12249. P. 503–518. DOI 10.1007/978-3-030-58799-4_37.
  29. Tardini E., Zhang X., Canahuate G., Wentzel A., Mohamed A.S.R., Van Dijk L., Fuller C.D., Marai G.E. Optimal Treatment Selection in Sequential Systemic and Locoregional Therapy of Oropharyngeal Squamous Carcinomas: Deep Q-Learning With a Patient-Physician Digital Twin Dyad. Journal of medical Internet research. 2022. V. 24. № 4. P. e29455. DOI 10.2196/29455.
  30. Ahmadian H., Mageswaran P., Walter B., Blakaj D.M., Bourekas E.C., Mendel E., Marras W.S., Soghrati S. Towards an AI‐Assisted Framework for Reconstructing the Digital Twin of Vertebra and Predicting its Fracture Response. International Journal for Numerical Methods in Biomedical Engineering. 2022. V. 38. № 6. P. e3601. DOI 10.1002/cnm.3601.
  31. Tai Y., Zhang L., Li Q., Zhu C., Chang V., Rodrigues J.J.P.C., Guizani M. Digital Twin-enabled IoMT System for Surgical Simulation using rAC-GAN. IEEE Internet of Things Journal. 2022. V. 9. № 21. P. 20918–20931. DOI 10.1109/JIOT.2022.3176300.
  32. Aubert K., Germaneau A., Rochette M., Ye W., Severyns M., Billot M., Rigoard P., Vendeuvre T. Development of Digital Twins to Optimize Trauma Surgery and Postoperative Management. A Case Study Focusing on Tibial Plateau Fracture. Frontiers in bioengineering and biotechnology. 2021. V. 9. P. 722275. DOI 10.3389/fbioe.2021.722275.
  33. Ahmadian H., Mageswaran P., Walter B., Blakaj D.M., Bourekas E., Mendel E., Marras W. A Digital Twin for Simulating the Vertebroplasty Procedure and its Impact on Mechanical Stability of Vertebra in Cancer Patients. International Journal for Numerical Methods in Biomedical Engineering. 2022. V. 38. № 6. P. e3600. DOI 10.1002/cnm.3600.
  34. Poletti G., Antonini L., Mandelli L., Tsompou P., Karanasiou G.S., Papafaklis M.I., Michalis L.K., Fotiadis D.I., Petrini L., Pennati G. Towards a Digital Twin of Coronary Stenting: A Suitable and Validated Image-Based Approach for Mimicking Patient-Specific Coronary Arteries. Electronics. 2022. V. 11. P. 502. DOI 10.3390/electronics11030502.
  35. Barbiero P., Viñas Torné R., Lió P. Graph Representation Forecasting of Patient's Medical Conditions: Toward a Digital Twin. Frontiers in Genetics. 2021. V.12. P. 652907. DOI 10.3389/fgene.2021.652907. 
  36. Shamanna P., Dharmalingam M., Sahay R., Mohammed J., Mohamed M., Poon T., Kleinman N., Thajudeen M. Retrospective study of glycemic variability, BMI, and blood pressure in diabetes patients in the Digital Twin Precision Treatment Program. Scientific Reports. 2021. V. 11. № 1. P. 14892. DOI 10.1038/s41598-021-94339-6.
  37. Xiwang H., Qiu Y., Lai X., Li Z., Shu L., Sun W., Song X. Towards a shape-performance integrated digital twin for lumbar spine analysis. Digital Twin. 2021. V. 1. P. 8. DOI 10.12688/digitaltwin.17478.1.
  38. Lal A., Li G., Cubro E., Chalmers S., Li H., Herasevich V., Dong Y., Pickering B.W., Kilickaya O., Gajic O. Development and Verification of a Digital Twin Patient Model to Predict Specific Treatment Response During the First 24 Hours of Sepsis. Critical care explorations. 2020. V. 2. № 11. P. e0249. DOI 10.1097/CCE.0000000000000249.
  39. Bagaria N., Laamarti F., Badawi H., Albraikan A., Martinez R., El Saddik A. Health 4.0: Digital Twins for Health and Well-Being. Connected Health in Smart Cities. Connected Health in Smart Cities. 2020. P. 143–152. DOI 10.1007/978-3-030-27844-1_7.
  40. Zhang H., Qi Q., Tao F. A multi-scale modeling method for digital twin shop-floor. Journal of Manufacturing Systems. 2022.
    V. 62. P. 417–428. DOI 10.1016/j.jmsy.2021.12.011.
  41. Lee H., Kim S.D., Al Amin M.A.U. Control framework for collaborative robot using imitation learning-based teleoperation from human digital twin to robot digital twin. Mechatronics. 2022. V. 85. P. 102833. DOI 10.1016/j.mechatronics.2022.102833.
  42. Fagherazzi G. Challenges and perspectives for the future of diabetes epidemiology in the era of digital health and artificial intelligence. Diabetes Epidemiology and Management. 2021. V. 1. P. 100004.
  43. Mourtzis D., Angelopoulos J., Panopoulos N., Kardamakis D. A Smart IoT Platform for Oncology Patient Diagnosis based on AI: Towards the Human Digital Twin. Procedia CIRP. 2021. V. 104. P. 1686–1691. DOI 10.1016/j.procir.2021.11.284.
  44. Barricelli B.R., Casiraghi E., Gliozzo J., Petrini A., Valtolina S. Human Digital Twin for Fitness Management. IEEE Access. 2020. V. 8. P. 26637–26664. DOI 10.1109/ACCESS.2020.2971576.
  45. Nebeker C., Torous J., Bartlett Ellis R.J. Building the case for actionable ethics in digital health research supported by artificial intelligence. BMC medicine. 2019. V. 17. № 1. P. 137. DOI 10.1186/s12916-019-1377-7.
  46. Dychka I., Sulema Y., Bukhtiiarov I. Digital twin information technology for biomedical data complex representation and processing. Bulletin of Kherson National Technical University. 2019. V. 3(70). P. 112–119. DOI 10.35546/kntu2078-4481.2019.3.12.
  47. Dalibor M., Heithoff M., Michael J., Netz L., Pfeiffer J., Rumpe B., Varga S., Wortmann A. Generating Customized Low-Code Development Platforms for Digital Twins. Journal of Computer Languages. 2022. V. 70. P. 101117. DOI 10.1016/j.cola.2022. 101117.
  48. Dragunov S.E., Popova S.S., Matokhina A.V., Chernetsky M.A. Introduction of a digital double on the example of monitoring the states of the Rejoint exoskeletal simulator. Caspian Journal: Management and High Technologies. 2020. № 4 (52). P. 112–118. (In Russian)
  49. Alekseev V.V., Korolev P.G., Aksenov A.Yu., Tsareva A.V. Creation of a video monitoring system and assessment of a person's condition based on a database of digital twins of his kinematic portrait. Collection of reports of the All-Russian practical conference "Intellectual checkpoint in Russia and the world: a competence-based approach to creation". St. Petersburg: St. Petersburg State Electrotechnical University "LETI" named after V.I. Ulyanov (Lenin), 2022. P. 50-52. (In Russian)
  50. Polovinkin S.A., Zaitseva G.O. Improving the system of training the sports reserve in cyclic sports using innovative technology of physiological avatar (digital double of the athlete) (using the example of cycling). Materials of the III All-Russian Scientific and Practical Conference with international participation "Current problems, current trends in the development of physical culture and sports, taking into account the implementation of national projects". Moscow: Plekhanov Russian University of Economics.2021. P. 832–838. (In Russian)
  51. Muratov R.M., Ryabykh I.A. Development of a prototype of a prosthetic arm based on Arduino using digital twin technology. Materials of the International Youth Scientific Conference "Energy and Digital Transformation" in 3 volumes. Under the general editorship of E.Y. Abdullazyanov. Volume 2. Kazan: LLC "Astor and I Printing Company". 2021. P. 334–337. (In Russian)  
  52. The project of the Ural Scientific and Educational Center for data collection to create a digital double of an athlete has been launched. Electronic resource. Access mode: https://www.susu.ru/ru/news/2019/10/23/startoval-proekt-uralskogo-noc-po-sboru-dannyh-dlya-sozda-niya-cifrovogo-dvoynika, date of reference: 05.07.2022.  
  53. Zhukova I.V., Kuzmichev V.E. Designing soft-bodied virtual twins of typical Russian figures for fitting compression clothing. News of higher educational institutions. Textile industry technology. 2021. № 4 (394). P. 139–144. DOI 10.47367/0021-3497_2021_4_139. (In Russian)   
  54. Zhukova I.V., Kuzmichev V.E. Designing solid-state digital twins of typical Russian figures to assess the quality of virtual clothing. News of higher educational institutions. Textile industry technology. 2021. № 3 (393). P. 106–112. DOI 10.47367/0021-3497_2021_3_106. (In Russian)   
  55. Zhumazhanova S., Sulavko A., Ponomarev D., Pasenchuk V. Statistical Approach for Subject’s State Identification by Face and Neck Thermograms with Small Training Sample. IFAC-PapersOnLine. 2019. V. 52. № 25. P. 46–51. DOI 10.1016/j.ifacol. 2019.12.444.
  56. Lozhnikov P.S., Zhumazhanova S.S. A model of a biometrics-code converter based on artificial neural networks for analyzing thermograms of subjects' faces. Digital technology security. 2021. № 2(101). P. 154–165. DOI 10.17212/ 2782-2230-2021-2-154-165. (In Russian)
  57. Zhumazhanova S.S., Sulavko A.E., Lozhnikov P.S. Neurobayesian Algorithm for Subject's Psychophysiological State Identification. XV International Scientific-Technical Conference on Actual Problems Of Electronic Instrument Engineering (APEIE). Novosibirsk, Russian Federation. 2021. P. 380–383. DOI 10.1109/APEIE52976.2021.9647606.
  58. Mammoottil M.J., Kulangara L.J., Cherian A.S., Mohandas P., Hasikin K., Mahmud M. Detection of Breast Cancer from Five-View Thermal Images Using Convolutional Neural Networks/ Journal of Healthcare Engineering. 2022. V. 2022. P. e4295221. DOI 10.1155/2022/ 4295221.
  59. Ng E.Y., Sudharsan N.M. An improved three-dimensional direct numerical modelling and thermal analysis of a female breast with tumour. Proceedings of the Institution of Mechanical Engineers. 2001. V. 215. № 1. P. 25–37. DOI 10.1243/0954411011533508.
Date of receipt: 27.04.2023
Approved after review: 11.05.2023
Accepted for publication: 26.05.2023