350 rub
Journal Neurocomputers №6 for 2022 г.
Article in number:
Control of a modular robot manipulator based on the method of autonomous adaptive control
Type of article: scientific article
DOI: https://doi.org/10.18127/j19998554-202206-04
UDC: 004.89
Authors:

E.I. Shestakov1, A.A. Zhdanov2

1 LLC “Datana” (Moscow, Russia)

2 JSC “Lebedev Institute of Precision Mechanics and Computer Engineering” (Moscow, Russia)

Abstract:

In the article, the authors develop an approach to the control of a modular manipulative robot based on the biologically inspired method of «Autonomous adaptive control» (AAC) which developed in AAC-Lab group of A.A. Zhdanov.

The task of the control is self-learning of moving the robot to the target point, with the condition of possible faults, for example, breakdown (jamming) of one of the links (modules). A feature of the approach is the simultaneous flow of control and learning processes. Main way of the AAC system realization is using of neuron-like nets on basis of self-learning models of neurons, that was developed in AAC-Lab [3]. The proposed approach can be used in the control of manipulative robotic systems.

Pages: 38-45
For citation

Shestakov E.I., Zhdanov A.A. Control of a modular robot manipulator based on the method of autonomous adaptive control. Neurocomputers. 2022. V. 24. № 6. Р. 38-45. DOI: https://doi.org/10.18127/j19998554-202206-04 (In Russian).

References
  1. Shestakov E.I., Zhdanov A.A. Adaptivnoye upravleniye modulnym rekonfiguriruyemym manipulyatsionnym robotom. Sb. trudov XXII Mezhdunar. nauchno-tekhnicheskoy konferentsii "Neiroinformatika-2020". M.: NIYaU MIFI. 2020. S.18–26.
  2. Shestakov E.I., Zhdanov A.A. Upravleniye manipulyatsionnym robotom na osnove metoda avtonomnogo adaptivnogo upravleniya. Tr. XVI Mezhdunar. mezhdistsiplinarnogo kongressa «Nei?ronauka dlya meditsiny i psikhologii». M.: MAKS Press. 2020. S. 527–529.
  3. Zhdanov A.A. Avtonomnyy iskusstvennyy intellekt. M.: BINOM. Laboratoriya znaniy. 2009. 359 s.
  4. Zhdanov A.A., Preobrazhenskiy N.B., Kholopov Yu.A., Stepanyan I.V., Nguyen Khyu Chung. Apparatnaya realizatsiya neyronnoy seti v adaptivnoy sisteme upravleniya. Neyrokompyutery: razrabotka. primeneniye. 2016. № 6. S. 55–62.
  5. Stepanyan I.V., Ziyep N.N. Rastushchiye svertochnyye neyropodobnyye struktury dlya zadach raspoznavaniya staticheskikh obrazov. Neyrokompyutery: razrabotka. primeneniye. 2018. № 5. S. 5–14.
  6. Zhdanov A.A., Lazarev V.M., Peshenko R.E. Mekhanizmy tsentralizovannogo i detsentralizovannogo upravleniya gruppirovkoy robototekhnicheskikh kompleksov. Neyrokompyutery: razrabotka. primeneniye. 2020. T. 22. № 4. S. 28–37. DOI: 10.18127/j19998554-202004-05
  7. Ziyep N.N., Zhdanov A.A. Algoritmy rosta neyronopodobnoy seti v sisteme avtonomnogo adaptivnogo upravleniya. Neyrokompyutery: razrabotka. primeneniye. 2021. T. 23. № 6. S. 24?31.
  8. Svidetelstvo № 2018661458 07.09.2018 «Programma dinamicheskogo sinteza rastushchikh biopodobnykh struktur na osnove iskusstvennykh neyronov s rasshirennoy funktsionalnostyu i sposobnostyu k doobucheniyu dlya zadach raspoznavaniya obrazov i upravleniya dinamicheskimi obyektami».
  9. Romanov A.M., Manko S.V., Shestakov E.I., Malko A.N., Chiu V.-Yu. Sposoby opisaniya i sredstva modelirovaniya mekhatronno-modulnykh rekonfiguriruyemykh robotov. Sb. trudov FGUP NPTsAP «Sistemy i pribory upravleniya». 2019. № 2.
Date of receipt: 23.05.2022
Approved after review: 02.06.2022
Accepted for publication: 22.11.2022