A.S. Kozharinov1, Yu.A. Kirichenko2, I.V. Afanasiev3, N.P. Labuz4, A.I. Vlasov5
1,2 National University of Science and Technology “MISiS” (Moscow, Russia)
3-5 Bauman Moscow State Technical University (Moscow, Russia)
Problem setting. A person in his psychophysical activity is characterized by making mistakes and deviations in thinking and behavior. Some of them can be distinguished, since they obey certain laws and can be predictable and systematic. The characteristic representatives of such errors and deviations are cognitive distortions. They are most critically manifested in the human operator when he is an active element of the control system, and his incorrect actions can be dangerous to the functioning of the system. The variety of cognitive distortions and taking into account the peculiarities of their influence in various fields of activity determines the relevance of their research and development of methods, technologies and software tools for their automated detection, especially using artificial intelligence technologies, models and tools. Solving the problems of studying and detecting cognitive distortions is aimed at creating methods and means for preventing unconscious activation of such distortions and errors in behavior and decision-making by the human brain.
Target. The purpose of this work is to systematize and generalize the influence of cognitive distortions on the functioning of human-machine systems, to develop the concept of an automated intelligent system for detecting cognitive distortions of a human operator.
Results. The model of human activity of the operator is considered in accordance with which the classification of tools for detecting cognitive distortions is given. A review of the classification of cognitive distortions according to Buster Bens, as well as each group of distortions, is provided with detection methods that can subsequently be used to develop software. The concept of an automated intelligent system for detecting cognitive distortions is proposed and key characteristics for creating a demonstration prototype are determined.
Practical significance. An automated intelligent cognitive distortion detection system can be used in a variety of activities. The priority area for implementation is the areas in which a person, as part of his professional activity, fulfills the obligations associated with the regular decision-making process in the presence of high risks and responsibility. These are, for example, aircraft crews; operators of equipment used in hazardous production and technological processes; military personnel on combat duty; physicians making a diagnosis in conditions of limited time and lack of information about the state of the patient's body; air traffic controllers, etc. It is also considered the use in conducting medical consultations, online interviews, optimizing the personnel potential of organizations, which will allow them to significantly increase the efficiency of work in systems managed by a person.
Kozharinov A.S., Kirichenko Yu.A., Afanasyev I.V., Labuz N.P., Vlasov A.I. Methods of analysis of cognitive distortions and the concept of an automated intelligent system for their detection. Neurocomputers. 2022. V. 24. № 4. Р. 39-74. DOI: https://doi.org/10.18127/j19998554-202204-04 (in Russian)
- Kukin P.P., Lapin V.L., Ponomarev N.L. i dr. Bezopasnost' zhiznedejatel'nosti, bezopasnost' tehnologicheskih processov i proizvodstv, ohrana truda. Ucheb. posobie dlja vuzov. Izd. 4-e, pererab. M.: Vysshaja shkola. 2007. 335 s. (in Russian).
- Bodalev A.A. Vosprijatie i ponimanie cheloveka chelovekom. M.: Izd-vo MGU. 1982. 199 s. (in Russian).
- Shepherd J. The face and social attribution. Handbook of research on face processing. Amsterdam: North Holland. 1989.
Р. 289-320. - Ushakov D.V. Anatomija psihologicheskogo znanija. Psihologicheskoe znanie: Sovremennoe sostojanie i perspektivy razvitija. Pod red. A.L. Zhuravleva, A.V. Jurevicha. M.: IP RAN. 2018. S. 71-115 (in Russian).
- Vekker L.M. Vosprijatie i osnovy ego modelirovanija. L.: Izd-vo Leningr. ordena Lenina gos. un-ta im. A.A. Zhdanova. 1964. 194 s. (in Russian).
- Leont'ev D.A. Ponimanie smysla i smysl ponimanija. Ponimanie: opyt mul'tidisciplinarnogo issledovanija. Pod red. A.A. Brudnogo, A.V. Utkina, E.I. Jacuty. M.: Smysl. 2006. S. 20-27 (in Russian).
- Park В., Judd C. M., Ryan C. S. Social categorization and the representation of variability information. European Review of Social Psychology. John Wiley and sons LTD. 1991. V. 2. Р. 211-245.
- Taylor S.E., Fiske S.T., Etkoff N.L., Ruderman A.J. Categorical and contextual bases of person memory and stereotyping. Journal of personality and social psychology. 1978. V. 36. № 7. Р. 778-793.
- Tversky A., Kahneman D. Extensional versus intuitive reasoning: The conjunction fallacy in probability judgment. Psychological Review. 1983. № 90. Р. 293–315.
- Popov A.Ju., Vihman A.A. Kognitivnye iskazhenija v processe prinjatija reshenij: nauchnaja problema i gumanitarnaja tehnologija. Vestnik Juzhno-Ural'skogo gosudarstvennogo universiteta. Ser. Psihologija. 2014. T. 7. № 1. S. 5-16 (in Russian).
- Bilibin K.I., Vlasov A.I., Zhuravleva L.V.i dr. Konstruktorsko-tehnologicheskoe proektirovanie jelektronnyh sredstv. Pod red. V.A. Shahnova. M.: Izd-vo MGTU im. N.Je. Baumana. 2005. 568 s. (in Russian).
- Krjukova T.L., Ekimchik O.A., Hohlova Ju.A., Kirpichnik O.V. Fenomen kognitivnyh iskazhenij sub'ektivnyh ocenok zhiznennyh javlenij i ego izmerenie (pervichnaja russkojazychnaja adaptacija shkaly kognitivnyh iskazhenij - CdS). Vestnik Kostromskogo gosudarstvennogo universiteta. Ser. Pedagogika. Psihologija. Sociokinetika. 2018. № 4. S. 61-67 (in Russian).
- Kahneman D., Krueger A.B. Developments in the measurement of subjective well-being. The Journal of Economic Perspectives. 2006.
№ 20. P. 3–24. - Kahneman D., Tversky A. (Eds.). Choices, values and frames. New York: Cambridge University Press and the Russell Sage Foundation. 2000.
- Kaneman D. Dumaj medlenno. Reshaj bystro. M.: AST. 2016. 653 s. (in Russian).
- Chaldini R. Psihologija vlijanija. Ubezhdaj. Vozdejstvuj. Zashhishhajsja. SPb: Piter. 2016. 338 s. (in Russian).
- Burkov V.N., Novikov D.A. Teorija aktivnyh sistem: sostojanie i perspektivy. M.: Sinteg. 1999 (in Russian).
- Burkov V.N., Novikov D.A. Teorija aktivnyh sistem (Istorija razvitija i sovremennoe sostojanie). Problemy upravlenija. 2009. № 3.1.
S. 28-35 (in Russian). - Burkov V.N., Lerner A.Ja. Princip otkrytogo upravlenija. M.: IAT. 1974 (in Russian).
- Burkov V.N. Osnovy matematicheskoj teorii aktivnyh sistem. M.: Nauka. 1977 (in Russian).
- Baturina O. Fundamental'naja oshibka atribucii pedagogov pri vosprijatii imi povedenija obuchajushhihsja: rezul'taty jempiricheskogo issledovanija. Pedagogicheskoe obrazovanie i nauka. MANPO. 2014. № 5. S. 145–147 (in Russian).
- Vlasov A.I. Sovremennoe sostojanie i tendencii razvitija teorii i praktiki aktivnogo gashenija volnovyh polej. Pribory i sistemy. Upravlenie, kontrol', diagnostika. 1997. № 11. S. 59 (in Russian).
- Mozzhuhina Ju.N. Kognitivnye iskazhenija kak svojstvo povedencheskih modelej. Problemy pedagogiki. 2017. № 9(32). S. 22-25 (in Russian).
- Psihologija myshlenija. Pod red. A.M. Matjushkina. M.: Progress. 1965. 532 s. (in Russian).
- Il'in E.P. Psihologija tvorchestva, kreativnosti, odarennosti. SPb: Piter. 2009 (in Russian).
- Zefirov T.L., Zijatdinova N.I., Kupcova A.M. Fiziologicheskie osnovy pamjati. Razvitie pamjati u detej i podrostkov. Kazan': KFU. 2015. 40 s. (in Russian).
- Kognitivnaja psihologija: istorija i sovremennost'. Hrestomatija. Pod red. M. Falikman, V. Spiridonova. M.: Lomonosov. 2011. 384 s.
- Benson B. Cognitive bias cheet sheet. Электронный ресурс. URL: busterbenson.com. дата обращения 05.12.2021 (in Russian).
- Vlasov A.I., Kon'kova A.F. Mediko-diagnosticheskie jekspertnye sistemy dlja ocenki adekvatnosti adaptivnoj reakcii organizma na vozdejstvie jekstremal'nyh faktorov. Konversija. 1995. № 9-10. S. 18-21 (in Russian).
- Belov P.G. Teoreticheskie osnovy sistemnoj inzhenerii bezopasnosti. M.: GNTP «Bezopasnost'», MIB STS. 1996. 424 s. (in Russian).
- Tkacheva O.N., Cherdak M.A., Mhitarjan Je.A. Obsledovanie pacientov s kognitivnymi narushenijami. RMZh. 2017. 25. S. 1880-1883. https://www.rmj.ru/articles/nevrologiya/Obsledovanie_pacientov_s_kognitivnymi_narusheniyami/ (in Russian).
- Nejrokomp'jutery v sistemah obrabotki izobrazhenij. Kn. 7. Pod red. A.I. Galushkina. M.: Radiotehnika. 2003. 192 s. (in Russian).
- Nejrokomp'jutery v sistemah obrabotki signalov. Kn. 9. Pod red. Ju.V. Guljaeva, A.I. Galushkina. M.: Radiotehnika. 2003. 224 s. (in Russian).
- Devjatkov V.V., Alfimcev A.N. Raspoznavanie manipuljativnyh zhestov. Vestnik Moskovskogo gosudarstvennogo tehnicheskogo universiteta im. N.Je. Baumana. Ser. Priborostroenie. 2007. № 3(68). S. 56-74 (in Russian).
- Vasilova E.V., Vlasov A.I., Evdokimov G.M. Neverbal'nye kommunikacii zhivotnogo mira: sistemnyj analiz zhestovyh jazykov. Mezhdunarodnyj nauchno-issledovatel'skij zhurnal. 2017. № 5-3(59). S. 14-23 (in Russian).
- Vasilova E.V., Vlasov A.I., Evdokimov G.M. Neverbal'nye kommunikacii zhivotnogo mira: kartirovanie jelementov zhestovyh jazykov. Mezhdunarodnyj nauchno-issledovatel'skij zhurnal. 2017. № 6-3(60). S. 102-110 (in Russian).
- Aver'janihin A.E., Vlasov A.I., Evdokimova E.V. Ierarhicheskaja piramidal'naja subdiskretizacija v glubokih svertochnyh setjah dlja raspoznavanija vizual'nyh obrazov. Nejrokomp'jutery: razrabotka, primenenie. 2021. T. 23. № 1. S. 17-31 (in Russian).
- Vlasov A.I., Papulin S.Ju. Analiz dannyh s ispol'zovaniem gistogrammnoj modeli kombinacii priznakov. Nejrokomp'jutery: razrabotka, primenenie. 2019. T. 21. № 5. S. 18-27 (in Russian).
- Sakulin S.A., Alfimcev A.N., Loktev D.A., Kovalenko A.O., Devjatkov V.V. Zashhita izobrazhenija cheloveka ot raspoznavanija nejrosetevoj sistemoj na osnove sostjazatel'nyh primerov. Vestnik komp'juternyh i informacionnyh tehnologij. 2020. T. 17. № 2(188). S. 32-38 (in Russian).
- Kozharinov A.S., Chernov T.S., Razumnyj N.P., Nikolaev D.P., Arlazarov V.V. Ocenka kachestva vhodnyh izobrazhenij v sistemah raspoznavanija videopotoka. Informacionnye tehnologii i vychislitel'nye sistemy. 2017. № 4. S. 71-82 (in Russian).
- Taranyan A.R., Devyatkov V.V., Alfimtsev A.N. Selective covariance-based human localization, classification and tracking in video streams from multiple cameras. 9th International Conference on Bioinformatics Models, Methods and Algorithms, Proceedings (BIOINFORMATICS 2018). Part of 11th International Joint Conference on Biomedical Engineering Systems and Technologies. BIOSTEC 2018. 2018. 9. С. 81-88.
- Devjatkov V.V., Alfimcev A.N., Taranjan A.R. Selektivno-kovariacionnyj metod lokalizacii, klassifikacii i otslezhivanija ljudej v videopotokah ot mnozhestva videokamer. Vestnik MGTU im. N.Je. Baumana. Ser. Priborostroenie. 2016. № 6(111). S. 54-70 (in Russian).
- Ivanova G.S., Golovkov A.A., Tjurin S.A. Detektirovanie i klassifikacija ob'ektov gorodskoj infrastruktury po izobrazhenijam v vidimom spektre. Tehnologii inzhenernyh i informacionnyh sistem. 2017. № 2. S. 15-25 (in Russian).
- Ivanova G.S., Golovkov A.A., Tjurin V.A. Detektirovanie i klassifikacija ob'ektov na izobrazhenijah v infrakrasnom spektre. Tehnologii inzhenernyh i informacionnyh sistem. 2017. № 2. S. 81-90 (in Russian).
- Juldashev M.N., Vlasov A.I. Programmnyj kompleks dinamicheskoj klassifikacii ob#ekta na osnove diapazonov predikatov dereva reshenij. Svidetel'stvo o registracii programmy dlja JeVM 2020665601, 27.11.2020. Zajavka № 2020664889 ot 20.11.2020 (in Russian).
- Prudius A.A., Karpunin A.A., Vlasov A.I. Analysis of machine learning methods to improve efficiency of BIG DATA processing in industry 4.0. Journal of Physics: Conference Series. 2019. N.032065.
- Ryszard S. Michalski, Jaime G. Carbonell, Tom M. Mitchell Machine Learning: An Artificial Intelligence Approach, Tioga Publishing Company. 1983.
- Liang Wang, Li Cheng, Guoying Zhao. Machine Learning for Human Motion Analysis. IGI Global. 2009. 318 p. (in Russian).
- Lekun Ja. Kak uchitsja mashina. Revoljucija v oblasti nejronnyh setej i glubokogo obuchenija. (Biblioteka Sbera: Iskusstvennyj intellekt). M.: Intellektual'naja Literatura. 2021 (in Russian).
- Pyt'ev Ju.P. Matematicheskie metody interpretacii jeksperimenta. M.: Vysshaja shkola. 1989. 351 s. (in Russian).
- Brodskij A.K., Kan V.L. Kratkij spravochnik po matematicheskoj obrabotke rezul'tatov izmerenij. M.: Gosudarstvennoe izdatel'stvo standartov. 1960. 167 s. (in Russian).
- Ahremchik O.L. Kognitivnye iskazhenija v processe proektirovanija sistem avtomatizacii. Vestnik Tverskogo gosudarstvennogo tehnicheskogo universiteta. 2012. № 22. S. 103-104 (in Russian).
- Degtjarjova V.V., Sozaeva D.A. Kognitivnye osobennosti prinjatija upravlencheskih reshenij v uslovijah cifrovoj jekonomiki. Rezul'taty jeksperimenta. Vestnik universiteta. 2019. № 4. S. 5-13 (in Russian).
- Luchinkina I.S. Kognitivnye mehanizmy kommunikativnogo povedenija v internet-prostranstve. Nauchnyj rezul'tat. Pedagogika i psihologija obrazovanija. 2018. T. 4. № 3. S. 56-70 (in Russian).
- Miller R.B. Vremja otklika v razgovornyh tranzakcijah chelovek-komp'juter. Proc. AFIPS Fall Joint Computer Conference. 1968. V. 33.
S. 267-277 (in Russian). - Jorm A.F., Jacomb P.A. The Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE): Socio-demographic correlates, reliability, validity and some norms. Psychological Medicine. 1989. № 19. Р. 1015-1022.
- Larson J., Mattu S., Kirchner L. and Angwin J. How We Analyzed the COMPAS Recidivism Algorithm. 2016.
- Andrew Thompson Google’s Sentiment Analyzer Thinks Being Gay Is Bad. Motherboard. 2017.
- Kliegr T., Bahnik S., Furkanz J. A review of possible effects of cognitive biases on interpretation of rule-based machine learning models. Artificial Intelligence. 2021. V. 295. № 103458.
- Vitt N. Lichnostno-situacionnaja oposredovannost' vyrazhenija i raspoznavanija jemocij v rechi. Voprosy psihologii. 1991. № 1. S. 95-107 (in Russian).
- Alfimtsev A., Nazarova S., Zelong X. Automatic chronological ordering of audio data using spectograms. Journal of Theoretical and Applied Information Technology. 2017. Т. 95. № 21. С. 5825-5836.
- Almaev N.A., Jumkina G.Ju. Formal'nye kojefficienty ocenki rechevoj produkcii v interv'ju: opyt razrabotki i primenenija. Voprosy psiholingvistiki. 2007. № 5. S. 46 (in Russian).
- Petrova E.M., Nichushkina T.N. Analiz problem avtomaticheskogo raspoznavanija russkoj rechi. Tehnologii inzhenernyh i informacionnyh sistem. 2019. № 1. S. 3-10 (in Russian).
- Peshkov D.V., Minitaeva A.M. Nejronnaja set' dlja opredelenija prinadlezhnosti predlozhenij zadannomu jazyku. Tehnologii inzhenernyh i informacionnyh sistem. 2019. № 4. S. 10-19 (in Russian).
- Morozov V.P. Iskusstvo i nauka obshhenija: Neverbal'naja kommunikacija. Psihofiziologicheskie i psihoakusticheskie osnovy (in Russian).
- Bajguzhin P.A., Shibkova D.Z., Ajzman R.I. Faktory, vlijajushhie na psihofiziologicheskie processy vosprijatija informacii v uslovijah informatizacii obrazovatel'noj sredy. ScienceforEducationToday. 2019. T. 9. № 5. S. 48-70 (in Russian).
- Vlasov A.I., Larionov I.T., Orehov A.N., Tetik L.V. Sistema avtomaticheskogo analiza metodov raspoznavanija jemocional'nogo sostojanija cheloveka. Nejrokomp'jutery: razrabotka, primenenie. 2021. T. 23. № 6 (in Russian).
- Orehov A.N. Reshenie nestandartnyh zadach komp'juternoj sistemoj. Nejrokomp'jutery: razrabotka, primenenie. 2021. T. 23. № 3.
S. 43−62 (in Russian). - Hrisanfova L. A. Predstavlenija ob individual'no-psihologicheskih osobennostjah cheloveka po strukturnym osobennostjam ego lica. Jeksperimental'naja psihologija. 2009. T. 2. № 4. S. 51-73 (in Russian).
- Barabanshhikov V. A., Hrisanfova L. A. Doverie k cheloveku pri pervichnom vosprijatii ego lica. Metody issledovanija psihologicheskih struktur i ih dinamiki. Pod red. T.N. Savchenko, G.M. Golovinoj. M.: IP RAN. 2007. Vyp. 4. S. 117-127 (in Russian).
- Minenko A.S., Vanzha T.V. Sistema raspoznavanija jemocional'nogo sostojanija cheloveka. Problemy iskusstvennogo intellekta. 2020.
№ 3(18). C. 60-69 (in Russian). - Breazieal P., Washeef A. Robots Emotion: A functional perspective. Who Need Emotions: The Brain Meet the Robots. MIT Press. 2003.
P. 138–169. - Jecheagaraj-Patron B.A., Kober V.I. Metod raspoznavanija lic s ispol'zovaniem trehmernyh poverhnostej. Informacionnye processy. 2016. T. 16. № 3. C. 170-178 (in Russian).
- Si Ja. Avtomaticheskie raspoznavanie jemocij pol'zovatelja dlja organizacii intellektual'nogo interfejsa. Molodezhnyj nauchno-tehnicheskij vestnik 2013. № 2(4). S. 51 (in Russian).
- Mishhenkova E.S. Sravnitel'nyj analiz algoritmov raspoznavanija lic. Vestnik Volgogradskogo gosudarstvennogo universiteta. Ser. 9: Issledovanija molodyh uchenyh. 2015. № 11. S. 75-78 (in Russian).
- Tuhtasinov M.T., Radzhabov S.S. Algoritmy raspoznavanija lic na osnove lokal'nyh napravlennyh shablonov. Problemy vychislitel'noj i prikladnoj matematiki. 2016. № 5(5). S. 101-106 (in Russian).
- Zaboleeva A. V. Razvitie sistemy avtomatizirovannogo opredelenija jemocij i vozmozhnye sfery primenenija. Otkrytoe obrazovanie. 2012. № 3. S. 60–63 (in Russian).
- Brumshtejn Ju.M., Molimonov D.A. Modeli, metody, tehnicheskie sredstva upravlenija riskami proektirovanija, sozdanija i jekspluatacii slozhnyh cheloveko-mashinnyh sistem s uchetom psihofiziologicheskih harakteristik ljudej-operatorov. Prikaspijskij zhurnal: upravlenie i vysokie tehnologii. 2019. № 3(47). S. 143-162 (in Russian).
- Vlasov A.I., Zenovkin N.V. Metody vizual'nogo upravlenija pri realizacii pol'zovatel'skih interfejsov. Programmnye produkty i sistemy. 2011. № 1. S. 23-26 (in Russian).
- Zherdev I.Ju., Barabanshhikov V.A. Apparatno-programmnyj kompleks dlja issledovanij zritel'nogo vosprijatija slozhnyh izobrazhenij vo vremja sakkadicheskih dvizhenij glaz cheloveka. Jeksperimental'naja psihologija. 2014. T. 7. № 1. S. 123-131 (in Russian).
- Popov A. Ju., Vihman A. A. Kognitivnye iskazhenija v processe prinjatija reshenij: nauchnaja problema i gumanitarnaja tehnologija. Vestnik JuUrGU. Serija «Psihologija». 2014. T. 7. № 1. S. 5-15 (in Russian).
- Baza biometricheskih dannyh i algoritmy raspoznavanija URL: http://biometrics.idealtest.org/datasets/1/1000/base/3450 (Data obrashhenija 15.08.2021) (in Russian).