A.N. Shtanko1
1 National Research Nuclear University "MEPhI" (NRNU MEPHI) (Moscow, Russia)
Problem statement. While developing new methods, algorithms and implementations in the field of convolutional neural networks it is vital to know the existing works presented in academic papers, as well as protected by patents. Therefore, it is necessary to analyze and systematize existing solutions based on convolutional neural networks protected by patents.
Objective. To find and analyze the inventions and utility models in the area of convolutional neural networks protected by Russian patent documents.
Results. Solutions in the area of neural networks protected by patents were found and analyzed. An increase in the number of patented solutions in recent years was shown, as well as the emergence of solutions based on convolutional neural networks. Abstracts of the inventions based on convolutional neural networks were analyzed, and a significant number of solutions were found specifically in the medical field, and in them the neural networks are most often used for classification, segmentation or feature extraction on various images or video sequence frames. In the patented solutions neural networks are used in several ways: the application of known solutions in new areas, invention of new methods and neural network solutions for a particular application problem, development of new neural network methods of general application.
Practical significance. These results can be used to evaluate the development of the field of convolutional neural networks when planning research and development in this area.
Shtanko A.N. Analysis of patented inventions and utility models based on convolutional neural networks. Neurocomputers. 2022. V. 24. № 4. Р. 5-17. DOI: https://doi.org/10.18127/j19998554-202204-01 (in Russian)
- Aloysius N., Geetha M. A review on deep convolutional neural networks. 2017 International Conference on Communication and Signal Processing (ICCSP). IEEE. 2017. P. 0588-0592. DOI: https://doi.org/10.1109/ICCSP.2017.8286426.
- Shtanko A., Kulik S. Preliminary Experiment on Emotion Detection in Illustrations Using Convolutional Neural Network. Brain-Inspired Cognitive Architectures for Artificial Intelligence: BICA*AI 2020. BICA 2020. Advances in Intelligent Systems and Computing. Springer, Cham. 2021. V. 1310. P. 490-494. DOI: https://doi.org/10.1007/978-3-030-65596-9_59.
- Silver D., Hubert T., Schrittwieser J., Antonoglou I., Lai M., Guez A., Lanctot M., Sifre L., Kumaran D., Graepel T., Lillicrap T., Simonyan K., Hassabis D. A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science. 2018. V. 362. № 6419. P. 1140-1144. DOI: https://doi.org/10.1126/science.aar6404.
- Danilin S.N., Shchanikov S.A., Sakulin A.E., Bordanov I.A. Determining the Fault Tolerance of MemristorsBased Neural Network Using Simulation and Design of Experiments. 2018 Engineering and Telecommunication (EnT-MIPT). IEEE. 2018. P. 205-209. DOI: https://doi.org/10.1109/EnT-MIPT.2018.00053.
- Tkachenko K.I. Patentuemye nejrosetevye reshenija. Nejrokomp'jutery: razrabotka, primenenie. 2009. № 4. S. 46-58 (in Russian).
- Poiskovaja sistema. Federal'nyj institut promyshlennoj sobstvennosti (FIPS). [jelektronnyj resurs] [sajt]. URL: https://www.fips.ru/elektronnye-servisy/informatsionno-poiskovaya-sistema/ (data obrashhenija: 20.10.2021) (in Russian).
- Otkrytye reestry. Federal'nyj institut promyshlennoj sobstvennosti (FIPS). [jelektronnyj resurs] [sajt]. URL: https://www.fips.ru/registers-web/register/ (data obrashhenija: 20.10.2021) (in Russian).
- Borisov V.V., Garanin O.I. A Method of Dynamic Visual Scene Analysis Based on Convolutional Neural Network. In Proceedings of 16th Russian Conference on Artificial Intelligence (RCAI-2018). Moscow, Russia. in September 24–27. Springer: Communications in Computer and Information Science. 2018. V. 934. P. 60–69. DOI: https://doi.org/10.1007/978-3-030-00617-4_6.
- Patent na izobretenie (S2) №2314023. Rossijskaja Federacija (RU), kl. A61B 5/05, A61N 5/06, A61P 17/00. Sposob opredelenija momenta pojavlenija psoralenov v kozhe pacienta. Moshnin M.V. Opubl. 10.01.2008. Bjul. № 1 (in Russian).
- Patent na izobretenie (S1) №2735648. Rossijskaja Federacija (RU), kl. MPK G01N 33/48. Sposob diagnostiki i korrekcii kostnogo autotransplantata posle vypolnenija rekonstruktivnoj kostnoplasticheskoj operacii. Brajlovskaja T.V., Berchenko G.N., Fedosova N.V., Tangieva Z.A., Vedjaeva A.P. Opubl. 05.11.2020. Bjul. № 31 (in Russian).
- Patent na izobretenie (S1) №2734058. Rossijskaja Federacija (RU), kl. MPK G06N 3/02, G06T 5/50. Sistema segmentacii izobrazhenij zdanij i sooruzhenij. Ostrovskaja A.A., Hrjashhev V.V. Opubl. 12.10.2020. Bjul. № 29 (in Russian).
- Patent na izobretenie (S1) №2710942, Rossijskaja Federacija (RU), kl. MPK G06N 3/063, G06N 3/08, G06K 9/62. Odnovremennoe raspoznavanie atributov lic i identifikacii lichnosti pri organizacii fotoal'bomov. Savchenko A.V. Opubl. 14.01.2020. Bjul. № 2 (in Russian).
- Patent na izobretenie (S1) №2731052. Rossijskaja Federacija (RU), kl. MPK B09B 5/00, B25J 11/00. Robotizirovannyj avtomaticheskij kompleks po sortirovke tverdyh kommunal'nyh othodov na osnove nejronnyh setej. Gobyzov O.A., Plohih I.A., Tokarev M.P., Serjodkin A.V., Bobrov M.S., Mishnev A.S., Amosov K.A., Dulin V.M., Chikishev L.M., Markovich D.M. Opubl. 28.08.2020. Bjul. № 25 (in Russian).
- Patent na izobretenie (S1) №2734579. Rossijskaja Federacija (RU), kl. MPK G06N 3/02. Sistema szhatija iskusstvennyh nejronnyh setej na osnove iterativnogo primenenija tenzornyh approksimacij. Gusak Ju.V., Ponomarev E.S., Markeeva L.B., Chihockij A.S., Oseledec I.V., Holjavchenko M.D. Opubl. 20.10.2020. Bjul. № 29 (in Russian).
- Patent na poleznuju model' (U1) №111926. Rossijskaja Federacija (RU), kl. MPK G06K 9/00. Ustrojstvo opredelenija rukopisnyh dokumentov, prinadlezhashhih ispolnitelju teksta na russkom jazyke. Kulik S.D., Nikonec D.A., Tkachenko K.I., Luk'janov I.A., Gun'ko N.E. Opubl. 27.12.2011. Bjul. № 36 (in Russian).
- Patent na izobretenie (S1) №2752137. Rossijskaja Federacija (RU), kl. A61B 5/0205. Personal'nyj telemedicinskij komplekt dlja distancionnogo kontrolja zhiznenno vazhnyh parametrov sostojanija zdorov'ja cheloveka. Bondarik A.N., Egorov A.I., Ul'janov V.V. Opubl. 23.07.2021. Bjul. № 21 (in Russian).
- Patent na izobretenie (S1) №2752453. Rossijskaja Federacija (RU), kl. A61B 5/00, G16H 10/00. Telemedicinskij terminal dlja osmotra i testirovanija rabotnikov promyshlennyh i transportnyh predprijatij. Tereshko E.A., Harchenko G.A. Opubl. 28.07.2021. Bjul. № 22 (in Russian).
- Patent na poleznuju model' (U1) №204085. Rossijskaja Federacija (RU), kl. G16H 10/00, A61B 5/00. Telemedicinskij hab dlja osmotra i testirovanija rabotnikov promyshlennyh i transportnyh predprijatij. Tereshko E.A., Harchenko G.A. Opubl. 05.05.2021. Bjul. № 13 (in Russian).
- Patent na poleznuju model' (U1) №61530. Rossijskaja Federacija (RU), kl. A61B 1/04. Ustrojstvo komp'juternoj morfometrii pri psoriaze. Moshnin M.V. Opubl. 10.03.2007. Bjul. № 7 (in Russian).
- Belousov A.G. Denezhnye bilety, blanki cennyh bumag i dokumentov. Opredelenie podlinnosti: Ucheb.-metodich. posobie. M.: InterKrim-press. 2011. 128 s. (in Russian).
- Kulik S.D., Shtanko A.N. Recognition Algorithm for Biological and Criminalistics Objects. Biologically Inspired Cognitive Architectures 2019. Proceedings of the Tenth Annual Meeting of the BICA Society (AISC). 2020. V. 948. P. 283–294. DOI: https://doi.org/10.1007/978-3-030-25719-4_36.
- Shtanko A.N., Kulik S.D. Scientific personnel training in convolutional neural networks for the implementation of research projects of the MegaScience class. IOP Conference Series: Journal of Physics: Conference Series. 2019. V. 1406. 012014. DOI:10.1088/1742-6596/1406/1/012014.
- Shtanko A.N., Kulik S.D., Kondakov A.A. Effective scientific personnel training in the field of modern computer technologies for the implementation of advanced research projects of the Megascience class. Journal of Physics: Conference Series. 2020. V. 1685. 012011. DOI: 10.1088/1742-6596/1685/1/012011.
- Subbotin S.A. Nejrokibernetika v SSSR-SNG: analiticheskij obzor izobretenij i patentov. Nauchnaja sessija MIFI-2002. IV Vseross. nauch.-tehnich. konf. «Nejroinformatika - 2002». M.: MIFI. 2002. http://www.library.mephi.ru/data/scientificsessions/2002/Neuro_1/ 1298.htm (in Russian).
- Kondakov A., Kulik S. Intelligent Information System for Telemedicine. Postproceedings of the 10th Annual International Conference on Biologically Inspired Cognitive Architectures (BICA 2019). Tenth Annual Meeting of the BICA Society. Held August 15-19. 2019 in Seattle, Washington, USA. Procedia Computer Science. 2020. V. 169. P. 240-243. DOI: https://doi.org/10.1016/j.procs.2020.02.142.
- Svidetel'stvo na programmu Rossijskoj Federacii №2018617763. Medical Diagnosis Bus System v.1.0 (#MeD-B-S). Pravoobladatel' OOO «Medicinskij centr «Kompanija Aleksandr» (Rossija). Kondakov A.A., Moshnin M.V., Danil'kevich M.A., Kulik S.D. Zajavka №2018615046; Zajav. 18.05.2018; Zaregistr. 02.07.2018; Bjul. №7.