A.A. Adamova, V.A. Zaykin, D.V. Gordeev
Bauman Moscow State Technical University (Moscow, Russia)
This article is devoted to an overview of the current state and development prospects in the field of machine learning technologies application in computer vision problems. The article discusses the types of architectures of deep convolutional networks used for image processing, discusses their application in the space industry and provides an analysis of the element base for the implementation of computer vision platforms.
The aim was to research the machine learning methods in computer vision problems. Consideration of options for using neural networks in solving problems related to astronautics.
The authors considered various methods and technologies of machine learning using both domestic and foreign devices. The study showed that at the moment there are several domestic companies that are engaged in the development of microprocessors, on which it is possible to implement a neural network and train it. Also, the prospects of machine learning in computer vision problems, their possibility and feasibility of application at the present time and in the near future were identified.
The results of the work can be used to create various types of neural networks. Based on the above overview of neural processors, you can begin to design a neural network. The processing and dumping of incoming information, necessary for machine learning, is able to control functions, solve emergency situations and protect human life.
Adamova A.A., Zaykin V.A., Gordeev D.V. Methods and technologies of machine learning in neural network for computer vision purposes. Neurocomputers. 2021. V. 23. № 4. Р. 25−39. DOI: https://doi.org/10.18127/j19998554-202104-03 (in Russian).
- Tyuring A.M. Vychislitelnyye mashiny i razum. V sb.: Khofshtader D., Dennet D. Glaz razuma. Samara: Bakhrakh-M. 2003. S. 47–59 (in Russian).
- Zhezhko L.V., Karpik A.P., Khoroshilov V.S. Sistemy iskusstvennogo intellekta. Ch. 1. Predstavleniye znaniy v informatsionnykh sistemakh: Ucheb. posobiye. Novosibirsk: SGGA. 2005. 84 s. (in Russian).
- Prudius A.A., Karpunin A.A., Vlasov A.I. Analysis of machine learning methods to improve efficiency of big data processing in industry 4.0. Journal of Physics: Conference Series. 2019. № 032065.
- Balukhto A.N., Romanov A.A. Iskusstvennyy intellekt v kosmicheskoy tekhnike: sostoyaniye. perspektivy razvitiya. Raketnokosmicheskoye priborostroyeniye i informatsionnyye sistemy. 2019. T. 6. Vyp. 1. S. 65–75 (in Russian).
- Howitt I., Gutierrez J.A. IEEE802.15.4 low rate-wireless personal area network coexistence issues, Wireless Communications and Networking 3. 2003. P. 1481–1486.
- Yuldashev M.N., Vlasov A.I., Novikov A.N. Energy-efficient algorithm for classification of states of wireless sensor network using machine learning methods. Journal of Physics: Conference Series. 2018. V. 1015. № 032153.
- Adamov A.P., Adamova A.A., Yuldashev M.N. Klassifikatsiya sostoyaniy besprovodnoy sensornoy seti s ispolzovaniyem metodov mashinnogo obucheniya. Problemy razrabotki perspektivnykh mikro- i nanoelektronnykh sistem (MES). 2016. № 2.S. 248–251 (in Russian).
- Averianikhin A.E., Vlasov A.I., Evdokimova E.V. Ierarkhicheskaya piramidalnaya subdiskretizatsiya v glubokikh svertochnykh setyakh dlya raspoznavaniya vizualnykh obrazov. Neyrokompyutery: razrabotka. primeneniye. 2021. T. 23. № 1. S. 17–31 (in Russian).
- Viryasova A.Yu., Vlasov A.I., Gladkikh A.A. Neyrosetevyye metody defektoskopii integralnykh struktur. Neyrokompyutery: razrabotka. primeneniye. 2019. № 2. S. 54–67 (in Russian).
- Vlasov A.I., Papulin S.Yu. Analiz dannykh s ispolzovaniyem gistogrammnoy modeli kombinatsii priznakov. Neyrokompyutery: razrabotka. primeneniye. 2019. T. 21. № 5. S. 18–27 (in Russian).
- Salakhutdinov R., Hinton G. Deep Boltzmann Machines. 2009. P. 448–455.
- Montufar G. Restricted Boltzmann Machines: Introduction and Review. 2018. 40 p.
- Goodfellow I., Bengio Y., Courville A. Deep Learning. The MIT Press, 2016.
- Grishelenok D.A., Kovel A.A. Ispolzovaniye neyrosetey v sistemakh vstroyennogo kontrolya bortovoy apparatury kosmi-cheskikh apparatov. Issledovaniya naukograda. 2013. №1 (3). 5 s (in Russian).
- Shakhnov V.A., Vlasov A.I., Polyakov Yu.A., Kuznetsov A.S. Neyrokompyutery: arkhitektura i skhemotekhnika. M.: Izd-vo Mashinostroyeniye. 2000. 64 s (in Russian).
- Vlasov A.I. Apparatnaya realizatsiya neyrovychislitelnykh upravlyayushchikh system. Pribory i sistemy. Upravleniye. kontrol. diagnostika. 1999. № 2. S. 61–65 (in Russian).
- Khalzev S.E., Vlasov A.I., Shakhnov V.A. Visual methods of high-level system design for digital hardware components. Journal of Physics: Conference Series. 2020. V. 1515. № 42024.
- Khalzev S.E., Vlasov A.I., Shakhnov V.A. Application of visual tools for system modeling of digital integrated circuits. Problemy raz-abotki perspektivnykh mikro- i nanoelektronnykh sistem (MES). 2020. № 1. S. 8–14 (in Russian).
- Kotelnitskiy A.V., Vlasov A.I. Primeneniye povedencheskikh modeley pri proyektirovanii sistem na kristalle. Inzhenernyy vestnik. 2012. № 9. S. 10 (in Russian).
- Vlasov A.I., Zhalnin V.P., Shakhnov V.A. Methods for improvement of the consistency and durability of the inorganic memristor structures. International Journal of Nanotechnology. 2019. Т. 16. № 1–3. С. 187–195.
- Vlasov A.I., Zhalnin V.P., Shakhnov V.A., Alyabyev I.O. Vozmozhnosti primeneniya perspektivnoy neyrosetevoy element-noy bazy na osnove neorganicheskikh memristorov. Neyrokompyutery i ikh primeneniye. XVII Vserossiyskaya nauchnaya konferentsiya. Tezisy dokladov. 2019. S. 242–245.
- Mikrin E.A. Bortovyye kompleksy upravleniya kosmicheskimi apparatami i proyektirovaniye ikh programmnogo obespecheniya. M.: Izdvo MGTU im. N.E. Baumana. 2003. 245 s.
- Filin V.M., Pchelintsev L.A., Denchik V.N. i dr. Optimizatsiya diagnostiki kosmicheskogo razgonnogo bloka. M.: 2004 (in Russian).
- Derevyanko V.V. Primeneniye DataMining v kosmicheskikh prilozheniyakh. Intellekt i nauka: tr. X Mezhdunar. nauch.-praktich. konf. «Intellekt i nauka» (g. Zheleznogorsk. 28-29 aprelya 2010 g). Krasnoyarsk: IPK SFU. 2010. S. 26–33 (in Russian).
- Vlasov A.I., Muraviev K.A., Prudius A.A., Uzenkov D.A. Load balancing in BIG DATA processing systems. International Review of Automatic Control. 2019. V. 12. № 1. С. 42–47.
- Nikolenko S.I., Kadurin A. A., Arkhangelskaya E.O. Glubokoye obucheniye. SPb: Piter. 2018. 480 s (in Russian).