D.A. Pominov
Computer Science Faculty, Moscow State University of Psychology and Education (Moscow, Russia)
Due to the specificity of organizing the learning process in school classes, often students do not have enough time for a practice to solve tasks (like a math or in similar theme) under the supervision of a teacher. In this case, using the services of tutors or selftraining. In recent years, online educational services have become most popular for self-learning. This approach has some limitations, one of which is the inability to individually configure for a specific user. The presented project is aimed at automating the process of e-learning, regarding the acquisition of practical skills in solving mathematical tasks, determining the level of knowledge and reducing the duration of training by reducing the number of tasks depending on the level of training (adaptability). An adaptive testing approach has been implemented to satisfy these requirements.
The created Markov models of adaptive testing became the basis for the development of an adaptive trainer for teaching nonformalized skills and abilities necessary for solving mathematical and other problems of sufficiently high complexity that require mastering both the standard technique of constructing reasoning and elements of creative thinking. A web service has been developed to demonstrate how it works. First of all, an adaptive trainer is considered the most effective in cases where it is necessary to order the knowledge and skills, such as to prepare for exams when solving non-formalized tasks (mathematical, technical, algorithmic, etc.). This service is not a substitute for a teacher, but rather complements the existing learning process, expanding the possibilities for self-study.
Pominov D.A. Adaptive trainer for preparing students for math exams. Neurocomputers. 2021. V. 23. № 2. Р. 35−42. DOI:
https://doi.org/10.18127/j19998554-202102-04 (in Russian).
- Kuravskiy L.S., Artemenkov S.L., Yuryev G.A., Grigorenko E.L. Novyy podkhod k kompyuterizirovannomu adaptivnomu te-stirovaniyu. Eksperimentalnaya psikhologiya. 2017. T. 10. №. 3. S. 33–45. doi:10.17759/exppsy.2017100303 (in Russian).
- Patent № 118095 (RF) na izobreteniye ot 21.02.2012. Ustroystvo dlya modelirovaniya adaptivnogo testirovaniya kognitivnykh sposobnostey ispytuyemogo / Kuravskiy L.S., Kulik S.D., Marmalyuk P.A., Yuryev G.A. (in Russian).
- Kuravskiy L.S., Margolis A. A., Marmalyuk P. A., Yuryev G. A., Dumin P.N. Obuchayemyye markovskiye modeli v zadachakh opti-mizatsii poryadka predyavleniya psikhologicheskikh testov. Neyrokompyutery: razrabotka. primeneniye. 2013. № 4. S. 28–38. (in Russian).
- Kuravskiy L.S., Margolis A.A., Marmalyuk P.A., Panfilova A.S., Yuryev G.A. Matematicheskiye aspekty kontseptsii adaptiv-nogo trenazhera. Psikhologicheskaya nauka i obrazovaniye. 2016. T. 21. № 2. C. 84–95. doi: 10.17759/pse.2016210210. (in Russian).
- Kuravskiy L.S., Margolis A.A., Yuryev G.A., Pominov D.A. Kontseptsiya samoobuchayushchegosya adaptivnogo trenazhera. Neyrokompyutery: razrabotka. primeneniye. 2018. № 3. S. 29–37. (in Russian).
- Patent № 122796 (RF) na izobreteniye ot 31.07.2012. Sistema podderzhki prinyatiya resheniy dlya psikhologicheskogo i pedagogicheskogo testirovaniya / Kuravskiy L.S., Margolis A.A., Marmalyuk P.A., Yuryev G.A., Dumin P.N., Kulik S.D. (in Russian).
- Kuravskiy L.S., Margolis A.A., Yuryev G.A., Marmalyuk P.A. Kontseptsiya sistemy podderzhki prinyatiya resheniy dlya psikhologicheskogo testirovaniya. Psikhologicheskaya nauka i obrazovaniye. 2012. № 1. S. 56–65. (in Russian).
- Kuravskiy L.S., Yuryev G.A. Adaptivnoye testirovaniye kak markovskiy protsess: modeli i ikh identifikatsiya. Neyrokompyu-tery: razrabotka. primeneniye. 2011. № 2. S. 21–29. (in Russian).
- Kuravskiy L.S., Yuryev G.A. Veroyatnostnyy metod filtratsii artefaktov pri adaptivnom testirovanii. Eksperimental-naya psikhologiya. 2012. T. 5. № 1. S. 119–131. (in Russian).
- Kuravskiy L.S., Yuryev G.A. Ispolzovaniye markovskikh modeley pri obrabotke rezultatov testirovaniya. Voprosy psikho-logii. 2011. № 2. S. 98–107. (in Russian).
- Kuravskiy L.S., Yuryev G.A. Ob odnom podkhode k adaptivnomu testirovaniyu i ustraneniyu ego artefaktov. Neyrokompyu-tery: razrabotka. primeneniye. 2012. № 1. (in Russian).
- Kuravskiy L.S. Markovskiye modeli v zadachakh diagnostiki i prognozirovaniya. Izd. 2-e dop. M.: Izd-vo MGPPU. 2017. 203 s. (in Russian).
- 1S: Elektronnoye obucheniye [Elektronnyy resurs]. – URL: http://v8.1c.ru/elo (data obrashcheniya 06.02.2016). (in Russian).
- Baker F.B. The Basics of Item Response Theory. ERIC Clearinghouse on Assessment and Evaluation. University of Maryland. College Park. MD. 2001.
- Ebmodo. Connect with students and parents in your paperless classroom. [Elektronnyy resurs]. – URL: https://www.edmodo.com (data obrashcheniya 03.02.2016).
- Gregory R.J. Psychological testing: History. principles. and applications (5th edition). New York: Pearson. 2007.
- Kats Y. Learning Management Systems and Instructional Design: Best Practices in Online Education. IGI Global. 2013.
- Kuravsky L.S., Marmalyuk P.A., Yuryev G.A., Dumin P.N. A Numerical Technique for the Identification of Discrete-State ContinuousTime Markov Models. Applied Mathematical Sciences. 2015. V. 9. № 8. R. 379–391. URL: http://dx.doi.org/10.12988/ams. 2015.410882.
- Kuravsky L.S., Marmalyuk P.A., Baranov S.N., Alkhimov V.I., Yuryev G.A., Artyukhina S.V. A New Technique for Testing Profes-sional Skills and Competencies and Examples of its Practical Applications. Applied Mathematical Sciences. 2015. V. 9. № 21. R. 1003–1026. http://dx.doi.org/10.12988/ams.2015.411899.
- Moodle open-source learning platform. Moodle Pty Ltd. [Elektronnyy resurs]. – URL: https://moodle.org (data obrashcheniya 03.02.2016).
- Rasch G. Probabilistic models for some intelligence and attainment tests. Copenhagen. Danish Institute for Educational Research. expanded edition (1980) with foreword and afterword by B.D. Wright. Chicago: The University of Chicago Press. 1960/1980.
- Thompson N.A., Weiss D.J. A framework for the development of computerized adaptive tests. Practical Assessment. Research & Evaluation. 2011. V. 16. № 1. R. 1-9.
- de la Torre J., Patz R.J. Making the Most of What We Have: A Practical Application of Multidimensional Item Response Theory in Test Scoring. Journal of Educational and Behavioral Statistics. 2005. № 30(3). R. 295-311. doi:10.3102/10769986030003295.
- Wright B.D., Masters G.N. Rating scale analysis. Rasch measurements. Chicago: MESA Press. 1982. 206 p.