350 rub
Journal Neurocomputers №1 for 2021 г.
Article in number:
Neural network system for detecting and neutralizing remote unauthorized interference into the components of the Internet of Things
DOI: 10.18127/j19998554-202101-07
UDC: 004.934
Authors:

A. I. Vlasov¹, E. R. Zakharov², V. O. Zakharova³

1–3  Department IU4 of Designing and Technology of Electronic Equipment, Bauman Moscow State Technical University (Moscow, Russia)

Abstract:

In this work the authors have analyzed the neural network system for detecting and neutralizing remote and unauthorized interference with components of the Internet of Things. The main focus is on considering the neural network approach to detecting intrusions into the Internet of Things network, its monitoring and countering suspicious activity on the host. Features of development of model of artificial neural networks for application of apparatus of neural network in this direction have been considered. This allows you to reflect the successful identification of various types of attacks in terms of true and false positive results. However, the problems of obtaining data on overload and critical modes of the system remain unresolved. The use of a neural network system for detecting and neutralizing remote and unauthorized interference with components of the Internet of Things allows you to implement a module for detecting anomalies in the network, based on the Voltaire series, which considers the theoretical prerequisites of the method of dynamically building an artificial neural network. The main types of attacks, types of intrusion detection systems, interpretations of the obtained data, a brief study of works in the field of neural network solutions have been analyzed. An effective solution has been offered to protect workstations in the Internet of Things network from unauthorized access, and to configure security for all component modules. In conclusion, recommendations have been given for implementing the construction of a neural network module that detects deviations in the operation of the Internet of Things from normal modes.

Pages: 63-80
For citation

Vlasov A.I., Zakharov E.R., Zakharova V.O. Neural network system for detecting and neutralizing remote unauthorized interference into the components of the Internet of Things. Neurocomputers. 2021. Vol. 23. No. 1. P. 63–80. DOI: 10.18127/j19998554-202101-07. (in Russian)

References
  1. Shakhnov V.A., Vlasov A.I., Polyakov Yu.A., Kuznetsov A.S. Nejrokomp'yutery: arkhitektura i skhemotekhnika. Ser. 9. Prilozhenie k zhurnalu «Informatsionnye tekhnologii». M.: Mashinostroenie. 2000. (in Russian)
  2. Nortkat S., Novak D. Obnaruzhenie narusheniĭ bezopasnosti v setyakh. Izd. 3-e. M.: Izdatel'skiĭ dom «Vil'yams». 2003. (in Russian)
  3. Kanter I., Kinzel W., Kanter E. Secure exchange of information by synchronization of neural networks. EPL (Europhysics Letters). 2002. V. 57. DOI: 10.1209/epl/i2002-00552-9.
  4. Kinzel W., Rujan P. Improving a network generalization ability by selecting examples. EPL (Europhysics Letters). 1990. V. 13.
    1. 473–477.
  5. Kinzel W., Kante I. Interacting neural networks and cryptography. In Kramer B. (Ed.) Advances in solid state physics. V. 42.
    1. 383–391. Berlin: Springer. 2002.
  6. Pupkov K.A. Mnogourovnevaya model' intellektual'noj sistemy dlya dinamicheskikh ob''ektov. Vestnik MGTU im. N.E. Baumana. 1998. № 1. (in Russian)
  7. Sabitov A.F., Khafizov I.I. Metody i sredstva izmerenij, ispytanij i kontrolya: Metodicheskie ukazaniya k kursovomu proektirovaniyu. Kazan': Izd-vo Kazan. gos. tekhn. un-ta. 2004. (in Russian)
  8. Vlasov A.I. Apparatnaya realizatsiya nejrovychislitel'nykh upravlyayushchikh system. Pribory i sistemy. Upravlenie, kontrol', diagnostika. 1999. № 2. S. 61–65. (in Russian)
  9. Vlasov A.I., Yudin A.V., Shakhnov V.A., Usov K.A., Salmina M.A. Design methods of teaching the development of internet of things components with considering predictive maintenance on the basis of mechatronic devices. International Journal of Applied Engineering Research. 2017. V. 12. № 20. P. 9390–9396.
  10. Demin A.A., Vlasov A.I. Visual methods of formalization of knowledge in the conditions of the synchronous technologies of system engineering. ACM International Conference Proceeding Series. 2017. № 3166098. URL: https://doi.org/10.1145/3166094.3166098.
  11. Vlasov A.I., Grigoriev P.V., Krivoshein A.I., Shakhnov V.A., Filin S.S., Migalin V.S. SMART management of technologies: predictive maintenance of industrial equipment using wireless sensor networks. Entrepreneurship and Sustainability Issues. 2018. V. 6. № 2. P. 489–502.
  12. Yudin A., Kolesnikov M., Vlasov A., Salmina M. Project oriented approach in educational robotics: from robotic competition to practical appliance. Advances in Intelligent Systems and Computing. 2017. V. 457. P. 83–94.
  13. Vlasov A.I., Shakhnov V.A., Filin S.S., Krivoshein A.I. Sustainable energy systems in the digital economy: concept of smart machines. Entrepreneurship and Sustainability Issues. 2019. V. 6. № 4. P. 1975–1986.
  14. Vlasov A.I., Yuldashev M.N. Analiz metodov i sredstv obrabotki informatsii sensornogo klastera. Datchiki i sistemy. 2018. № 1 (221). S. 24–30. (in Russian)
  15. Khalzev S.E., Vlasov A.I., Shakhnov V.A. Visual methods of high-level system design for digital hardware components. Journal of Physics: Conference Series. 2020. P. 42024.
  16. Vlasov A.I., Krivoshein A.I., Filin S.S. Concept of a universal smart circuit breaker with protection against spark discharge. Advances in Systems Science and Applications. 2020. V. 20. № 1. P. 1–12.
  17. Vlasov A.I., Filin S.S., Krivoshein A.I. Universal smart circuit breaker concept. 2019 International Conference on Industrial Engineering, Applications and Manufacturing. ICIEAM 2019. 2019. P. 8743080.
  18. Vlasov A., Yuldashev M. Performance analysis of algorithms for energy-efficient data transfer in wireless sensor networks. 2019 International Conference on Industrial Engineering, Applications and Manufacturing. ICIEAM 2019. 2019. P. 8743087.
  19. Prudius A.A., Karpunin A.A., Vlasov A.I. Analysis of machine learning methods to improve efficiency of big data processing in industry 4.0. Journal of Physics: Conference Series. 2019. P. 032065.
  20. Yuldashev M.N., Vlasov A.I. Mathematical model of the general problem of state classification in wireless sensor networks. IOP Conference Series: Materials Science and Engineering. 2019. P. 012002.
  21. Zhalnin V.P., Zakharova A.S., Uzenkov D.A., Vlasov A.I., Krivoshein A.I., Filin S.S. Configuration-making algorithm for the smart machine controller based on the internet of things concept. International Review of Electrical Engineering. 2019. V. 14. № 5. P. 375–384.
  22. Vlasov A.I., Muraviev K.A., Prudius A.A., Uzenkov D.A. Load balancing in big data processing systems. International Review of Automatic Control. 2019. V. 12. № 1. P. 42–47.
  23. Vlasov A.I., Berdyugina O.N., Krivoshein A.I. Technological platform for innovative social infrastructure development on basis of smart machines and principles of internet of things. Proceedings 2018 Global Smart Industry Conference (GloSIC). 2018. P. 8570062.
  24. Yuldashev M.N., Vlasov A.I., Novikov A.N. Energy-efficient algorithm for classification of states of wireless sensor network using machine learning methods. Journal of Physics: Conference Series. 2018. V. 1015. P. 032153.
  25. Vlasov A.I., Papulin S.Yu. Analiz dannykh s ispol'zovaniem gistogrammnoj modeli kombinatsii priznakov. Nejrokomp'yutery: razrabotka, primenenie. 2019. T. 21. № 5. S. 18–27. (in Russian)
  26. Viryasova A.Yu., Vlasov A.I., Gladkikh A.A. Nejrosetevye metody defektoskopii integral'nykh struktur. Nejrokomp'yutery: razrabotka, primenenie. 2019. № 2. S. 54–67. (in Russian)
  27. Evan D. The internet of things – How the next evolution of the internet is changing everything. CISCO White Paper. April. 2011. P. 1–11.
  28. Bellekens X., Seeam A., Nieradzinska K., Tachtatzis C., Cleary A., Atkinson R., Andonovic I. Cyber-physical-security model for safety-critical IoT infrastructures. Wireless World Research Forum Meeting 35 (WWRF35). Copenhagen, Denmark. 2015.
  29. Murphy K. Machine learning: a probabilistic perspective. Adaptive computation and machine learning series. The MIT Press. 2012.
  30. Alsheikh M.A., Lin S., Niyato D., Tan H.-P. Machine learning in wireless sensor networks: algorithms, strategies, and applications. IEEE Communications Surveys & Tutorials. 2014. V. 16. № 4. P. 1996–2018.
  31. Kozushko H. Intrusion detection: Host-based and network-based intrusion detection system. Sept. 2003. V. 11.
  32. Nanduri A., Sherry L. Anomaly detection in aircraft data using recurrent neural networks (RNN). In: Integrated Communications Navigation and Surveillance (ICNS). 2016. P. 5C2–1.
  33. Smith V., Chiang C.-K., Sanjabi M., Talwalkar A.S. Federated multi-task learning / In: Guyon I., Luxburg U.V., Bengio S., Wallach H., Fergus R., Vishwanathan S., Garnett R. (Eds.) Advances in neural information processing systems. 2017. P. 4427–4437.
  34. Lear E., Droms R., Romascanu D. Manufacturer usage description specification // IETF Network Working Group. URL: https://tools. ietf.org/html/draft-ietf-opsawg-mud-25 (accessed: 08.04.2019).
  35. Rajasegarar S., Leckie C., Palaniswami M. Hyperspherical cluster based distributed anomaly detection in wireless sensor networks. Journal of Parallel and Distributed Computing. 2014. V. 74. № 1. P. 1833–1847.
  36. Miettinen M., Marchal S., Hafeez I., Asokan N., Sadeghi A., Tarkoma S. IoT sentinel: Automated device-type identification for security enforcement in IoT. Proceedings of 37th IEEE International Conference on Distributed Computing Systems (ICDCS 2017). Jun. 2017.
  37. Antonakakis M., April T., Bailey M., Bernhard M., Bursztein E., Cochran J., Durumeric Z., Halderman J.A., Invernizzi L., Kallitsis M., Kumar D., Lever C., Ma Z., Mason J., Menscher D., Seaman C., Sullivan N., Thomas K., Zhou Y. Understanding the mirai botnet. 26th USENIX Security Symposium (USENIX Security 17). Vancouver, BC: USENIX Association. 2017. P. 1093–1110.
  38. Edwards S., Profetis I. Hajime: Analysis of a decentralized internet worm for IoT devices. Rapidity Networks. Tech. Rep. 2016.
  39. Costan V., Devadas S. Intel SGX explained. IACR Cryptology ePrint Archive. 2016. V. 2016. P. 86.
  40. Pa Y.M.P., Suzuki S., Yoshioka K., Matsumoto T., Kasama T., Rossow C. IoTPOT: A novel honeypot for revealing current IoT threats. Journal of Information Processing. 2016. V. 24. № 3. P. 522–533.
  41. Malykhina M.P., Begman Yu.V. Nejrosetevye ekspertnye sistemy: obuchenie nejronnoj seti. Trudy Kubanskogo gosudarstvennogo universiteta. 2005. T. 25. № 3. S. 93–94. (in Russian)
Date of receipt: 19.11.2020.
Approved after review: 04.12.2020.
Accepted for publication: 14.12.2020.