Journal Neurocomputers №1 for 2020 г.
Article in number:
The method of determining the flight altitude unmanned aerial vehicle for the correction of strapdown inertial navigation systems using intelligent systems geospatial information
Type of article: scientific article
DOI: 10.18127/j19998554-202001-02
UDC: 621.865.8-5
Authors:

V.M. Goncharov – Post-graduate Student, 

Military Academy of Strategic Missile Forces named after Peter the Great, Moscow

E-mail: vladimir-goncharov.1986@mail.ru

V.Yu. Lupanchuk – Ph.D. (Eng.), Lecturer, 

Military Academy of Strategic Missile Forces named after Peter the Great, Moscow 

E-mail: raketofflu@mail.ru

Abstract:

Autonomous positioning of an unmanned aerial vehicle (UAV) with limited weight and size parameters in space requires correction of the strapdown inertial navigation system (SINS). Corrective corrections are determined by the method of visual navigation on special points of the underlying surface. For effective application of the method of visual navigation, it is necessary for the UAV to fly at a sufficient height to identify the required number of special points.

Determination of sufficient altitude of the aircraft to correct strapdown inertial navigation system in the absence of satellite signals using intelligent geospatial information system (ISGI).

The article presents a technique that allows to calculate a sufficient height of the UAV flight over the correction area by applying algorithms: formation of correction areas by an intelligent geospatial information system, calculation of the UAV trajectory to the start point, calculation of the UAV flight altitude, correction of sins. The significance of the research is due to the formation of coefficients characterizing the sparsity of the underlying surface descriptors and the share of the reference image in the current one, which allow determining the correction corrections of the UAV navigation system.

The application of the methodology for determining a sufficient altitude, it allows Autonomous position of the UAV in space preserving acceptable accuracy of determining location coordinates, to reduce resource-intensive computations on continuous monitoring of the underlying surface and identify specific points to take into account the instrumental errors, the sins and characteristics of optoelectronic systems.

Pages: 18-30
For citation

Goncharov V.M., Lupanchuk V.Yu. The method of determining the flight altitude unmanned aerial vehicle for the correction  of strapdown inertial navigation systems using intelligent systems geospatial information. Neurocomputers. 2020. V. 22. № 1. P. 18–30. DOI: 10.18127/j19998554-202001-02.

References
  1. Woodman O.J. An introduction to inertial navigation. Technical reports published by the University of Cambridge Computer Laboratory are freely available via the Internet. URL: http://www.cl.cam.ac.uk/techreports/
  2. Volkov V.L., Zhidkova N.V. Osobennosti modelirovaniya besplatformennyh inercial'nyh system. Nauchnoe obozrenie. Tekhnicheskie nauki. 2016. № 4. S. 5-12. (In Russian).
  3. Ardentov A.A., Beschastnyj I.Yu., Mashtakov A.P., Popov A.Yu., Sachkov Yu.L., Sachkova Е.F. Algoritm vychisleniya polozheniya i orientacii BPLA. Programmnye sistemy i prilozheniya. 2012. № 3(12). S. 23–39. (In Russian).
  4. Bodunkov N.Е. Rasshirenie uslovij funkcionirovaniya sistem vizual'noj navigacii avtonomnyh bespilotnyh letatel'nyh apparatov: diss….k.t.n. M.: 2015. (In Russian).
  5. Kuznecov A.G. Povyshenie tochnosti ocenki koordinat malogabaritnogo bespilotnogo letatel'nogo apparata s ispol'zovaniem sistemy tekhnicheskogo zreniya. diss….k.t.n. Moskovskij aviacionnyj institut (tekhnicheskij universitet). 2011. (In Russian).
  6. Stepanova N.V. Reshenie celevyh i navigacionnyh zadach na bortu malorazmernogo bespilotnogo letatel'nogo apparata na osnove obrabotki izobrazheniya podstilayushchej poverhnosti. diss….k.t.n. Moskovskij aviacionnyj institut (tekhnicheskij universitet). 2007. (In Russian).
  7. Armstrong A.J. Development of a methodology for deriving safety metrics for UAV operational safety performance measurement. The University of York. January 2010.
  8. Gageik N., Strohmeier M., Montenegro S. An autonomous UAV with an Optical Flow Sensor for Positioning and Navigation. International Journal of Advanced Robotic Systems. 2013. V. 10(341). P. 1-9.
  9. Lee K., Kriesel J.M., Gat N. Autonomous Airborne Video-Aided Navigation. Navigation: Journal of The Institute of Navigation. 2010. V. 57. № 3. P. 163-173.
  10. Mulyanto T., Nurhakim M.L.I., Muhammad H. Development of Pose Estimation System Based on Dual Camera Techniques for Parameters Identification of Indoor MAV. 28th International Congress of the Aeronautical Sciences (ICAS). 2012. Paper ICAS 2012-11.9.4.
  11. Qadir A., Semke W., Neubert J. Implementation of an Onboard Visual Tracking System with Small Unmanned Aerial Vehicle (UAV). International Journal of Innovative Technology & Creative Engineering. 2011. V. 1. № 10. P. 17-25.
  12. Goncharov V.M. Tekushchie repernye izobrazheniya kak dopolnitel'nyj istochnik korrekcii dlya besplatformennyh inercial'nyh navigacionnyh sistem bespilotnogo letatel'nogo apparata. Nauchno-tekhnicheskij sbornik «Izvestiya» № 282. «Koncepciya razvitiya i primeneniya robotekhnicheskih kompleksov voennogo naznacheniya v interesah RVSN». 2018. S. 49-59. (In Russian).
  13. Averkin A.N., Gaaze-Rapoport M.G., Pospelov D.A. Tolkovyj slovar' po iskusstvennomu intellektu. M.: Radio i svyaz', 1992.  (In Russian).
  14. Soboleva T.S., Chechkin A.V. Diskretnaya matematika: uchebnik dlya stud. uchrezhdenij vyssh. obrazovaniya. Pod red.  A.V. Chechkina. Izd. 3-e, pererab. M.: Izdatel'skij centr «Akademiya». 2014. (In Russian).
  15. NVIDIA Jetson AGX Xavier Delivers 32 TeraOps for New Era of AI in Robotics [Electronnyi resurs]. / URL: https://devblogs.nvidia.com/nvidia-jetson-agx-xavier-32-teraops-ai-robotics/?ncid=so-fac-mdjngxxrmllhml-69163(dataobrashcheniya: 02.04.2019). 
Date of receipt: 6 июня 2019 г.