350 rub
Journal Neurocomputers №1 for 2019 г.
Article in number:
Neural networks and system analysis for the university educational process
Type of article: scientific article
DOI: 10.18127/j19998554-201901-04
UDC: [004.032.26+372.8]:303.732.4
Authors:

S. D. Kulik – Dr.Sc. (Eng.), Senior Research Scientist, Professor, National Research Nuclear University «MEPHI», Moscow State University of Psychology and Education

E-mail: sedmik@mail.ru

Abstract:

This article deals with the system analysis and neural networks for educational process. The main purpose of the article is to present the necessary elements of system analysis such as principles, indicators, system performance criteria and neural networks. The next purpose of this paper is to show the possibility of applying neural networks and system analysis to the educational process. For this area, the third principle of the theory of systems and systems analysis (maximum efficiency of the system) is specially highlighted. The main focus is on the effectiveness of the system, which can be assessed using special indicators. We used the necessary principles and methods of system analysis, as well as special software for investigating the elements of system analysis for the study of the performance indicator. In this case, special software is considered as a tool for solving problems of system analysis. The students learn the system analysis elements and solve optimization problems.

The results of the neural network model for interpretation of G. Rasch model for dynamic testing of students have been presented. The important feature of the proposed neural network interpretation is that the total function of activation of a neural network and the function of success in G. Rasch model are identical.

This article also deals with the problem of performance indicators. The brief review of the convolution indicators has been presented. The main focus is on the neural network convolution of indicators, which can be assessed using for studying the elements of system analysis and neural networks.

The review of the software for neural network and system analysis has been presented as well. We developed the special software for studying the elements of system analysis and neural networks. We also used the special software for the educational process in National Research Nuclear University «MEPHI».

Finally, main results have been outlined. The results have been protected with patents. It has been concluded that it is necessary to pay more attention in the framework of the educational process to the elements of system analysis and neural networks.

Pages: 19-29
References
  1. Galushkin A.I. Neural networks theory. Springer Berlin Heidelberg New York. 2007.
  2. Haykin S. Neural networks – A comprehensive foundation. 2nd Ed. Pearson Education, Inc. 1999. Reprint. 2005.
  3. Kulik S.D. Posledovatel'nyj analiz i nejronnye seti v faktograficheskikh informatsionnykh sistemakh // Nejrokomp'yutery: razrabotka, primenenie. 2018. № 9. S. 53–60.
  4. Kulik S.D. Metod posledovatel'nogo analiza dlya testirovaniya cheloveka-operatora // Prikladnaya informatika. 2015. T. 10. № 3 (57). S. 100–108.
  5. Volkova V.N. Sistemnyj analiz informatsionnykh kompleksov. SPb.: Lan'. 2016.
  6. Artyukhin G.A. Teoriya sistem i sistemnyj analiz. Praktikum prinyatiya reshenij. Kazan': KGASU. 2016.
  7. Kachala V.V. Osnovy teorii sistem i sistemnogo analiza. M.: Goryachaya liniya – Telekom. 2012.
  8. Kulik S.D. Elementy teorii prinyatiya reshenij (kriterii i zadachi). Ucheb. posobie. Izd. 2-e, ispr. M.: NIYaU MIFI. 2018.
  9. Kulik S.D. Teoriya prinyatiya reshenij (elementy teorii proverki veroyatnykh gipotez). Ucheb. posobie. Izd. 2-e, ispr. M.: NIYaU MIFI. 2018.
  10. Kulik S.D. Elementy sistemnogo analiza dlya studentov starshikh kursov universiteta // Estestvennye i tekhnicheskie nauki. 2018. № 11 (125). S. 373–377.
  11. Kulik S.D. Elementy sistemnogo analiza dlya studentov mladshikh kursov universiteta // Estestvennye i tekhnicheskie nauki. 2018. № 12 (126). S. 357–360.
  12. Kulik S.D. Uchet cheloveka-operatora, rabotayushchego vne kontura AFIPS // Bezopasnost' informatsionnykh tekhnologij. 2002. № 4. S. 79–86.
  13. Kulik S.D. Faktograficheskie sistemy (metody postroeniya, modeli, strategii poiska i programmnoe obespechenie). M.: Radiotekhnika. 2003.
  14. Kulik S.D. Issledovanie faktograficheskikh sistem i baz dannykh // Nauchno-tekhnicheskaya informatsiya. 2003. Ser. 2. № 4. S. 33–41.
  15. Kulik S.D. Obespechenie informatsionnoj bezopasnosti i faktograficheskie sistemy // Bezopasnost' informatsionnykh tekhnologij. 2015. № 1. S. 99–101.
  16. Kulik S.D. Effektivnyj faktograficheskij poisk s uchetom trebovanij informatsionnoj bezopasnosti // Bezopasnost' informatsionnykh tekhnologij. 2015. № 3. S. 85–90.
  17. Kulik S.D. Nejrosetevye algoritmy i avtomatizirovannye faktograficheskie informatsionnye sistemy // Nejrokomp'yutery: razrabotka, primenenie. 2015. № 12. S. 58–65.
  18. Kulik S.D. Razrabotka i issledovanie modeli AFIPS // Bezopasnost' informatsionnykh tekhnologij. 2004. № 2. S. 65–73.
  19. Kulik S.D. Programmy dlya raboty s tsennymi bumagami i uchet chelovecheskogo faktora v AFIPS – osnova zashchity ot moshennichestva // Bezopasnost' informatsionnykh tekhnologij. 2002. № 3. S. 65–71.
  20. Kulik S.D. Proektirovanie AFIPS kriminalisticheskogo naznacheniya // Bezopasnost' informatsionnykh tekhnolo-gij. 2002. № 1. S. 78–81.
  21. Kulik S.D. Spetsial'nye sredstva dlya obespecheniya informatsionnoj bezopasnosti // Bezopasnost' informatsionnykh tekhnologij. 2015. № 2. S. 36–40.
  22. Kulik S.D. O nejronnykh setyakh i plagiate // Sb. tezisov dokl. XV Vseross. nauch. konf. «Nejrokomp'yutery i ikh primenenie» (NKP–2017). M.: MGPPU. 2017. S. 19–21.
  23. Kulik S.D. O blokchejne, majninge i nejronnykh setyakh // Sb. tezisov dokl. XVI Vseross. nauch. konf. «Nejrokomp'yutery i ikh primenenie» (NKP–2018). M.: MGPPU. 2018. S. 21–23.
  24. Kulik S., Nikonets D. Forensic handwriting examination and human factors: Improving the practice through automation and expert training // Proc. of 2016 Third International Conference on Digital Information Processing, Data Mining, and Wireless Communications (DIPDMWC). P. 221–226.
  25. Kulik S.D. Model for evaluating the effectiveness of search operations // Journal of ICT Research and Applications (ITB Journal of Information and Communication Technology). 2015. V. 9. № 2. P. 177–196.
  26. Kulik S., Tkachenko K. Effective strategy for competences forming // Proc. of 2016 Third International Conference on Digital Information Processing, Data Mining, and Wireless Communications (DIPDMWC). P. 239–244.
  27. Kulik S. Factographic information retrieval for communication in multicultural society // Procedia – Social and Behavioral Sciences (International Conference on Communication in Multicultural Society CMSC–2015, 6–8 December 2015, Moscow, Russian Federation). 2016. V. 236. P. 29–33.
  28. Kulik S. Factographic information retrieval for competences forming // 2106 Third International Conference on Digital Information Processing, Data Mining, and Wireless Communications (DIPDMWC). 2016. P. 245–250.
  29. Kulik S.D., Belov A.N., Matveeva K.I. Development of generation special short articles for the given topic // International Journal of Engineering & Technology. 2018. V. 7. № 2.23 (Special Issue 23). P. 171–174.
  30. Kulik S.D., Tkachenko K.I. Formirovanie faktograficheskikh dannykh (kriminalistika, obuchenie, innovatsiya). M.: Radiotekhnika. 2016.
  31. Kulik S.D. Elementy sistemnogo analiza (effektivnost' sistem). Ucheb. posobie. M.: NIYaU MIFI. 2018.
  32. Petrus' A.V. Effektivnost' dokumental'nykh IPS s pozitsii teorii statisticheskikh reshenij // NTI. Ser. 2. 1987. № 4. S. 6–14.
  33. Abchuk V.A., Suzdal' V.G. Poisk ob"ektov. M.: Sov. radio. 1977.
  34. Venttsel' E.S., Ovcharov L.A. Teoriya veroyatnostej i ee inzhenernye prilozheniya. M.: Nauka. 1988.
  35. Rasch G. Probabilistic models for some intelligence and attainment tests (Series: Studies in Mathematical Psychology I). Copenhagen, Denmark: Danmarks Paedogogiske Institute, Danish Institute for Educational Research. 1960.
  36. Kulik S.D., Tkachenko K.I., Sergeev M.S. Spetsializirovannaya intellektual'naya podsistema i vozmozhnost' nejrosetevoj interpretatsii dlya modeli Georga Rasha // Nejrokomp'yutery: razrabotka, primenenie. 2012. № 9. S. 35–46.
  37. Venttsel' E.S. Issledovanie operatsij: zadachi, printsipy, metodologiya. M.: Vysshaya shkola. 2001.
  38. Abramov I.V., Aleksandrova N.A., Tsenyov A.V. Iskusstvennye nejronnye seti v vychislenii konkurentosposobnogo potentsiala kafedry VUZa // Vestnik IzhGTU. 2008. № 4. S. 131–134.
  39. Chernorutskij I.G. Metody prinyatiya reshenij. SPb.: BKhV-Peterburg. 2005.
Date of receipt: 10 января 2019 г.