350 rub
Journal Neurocomputers №6 for 2018 г.
Article in number:
Hardware implementation of a neuron-like network with the ability to recognize noisy pattern
Type of article: scientific article
UDC: 004.383.8.032.26; 165.24
Authors:

I.A. Mishustin – Post-graduate Student, Institute of Precision Mechanics and Computer Engineering n.a. S.A. Lebedev RAS (Moscow)

E-mail: mishustinivan777@gmail.com

N.B. Preobrazhensky – Ph.D. (Eng.), Senior Research Scientist, Institute of Precision Mechanics and Computer Engineering n.a. S.A. Lebedev RAS (Moscow)

E-mail: nbp@mail.ru

A.A. Zhdanov – Dr.Sc. (Phis.-Math.), Professor, Institute of Precision Mechanics and Computer Engineering n.a. S.A. Lebedev RAS (Moscow)

E-mail: a.zhdanov@mail.ru

I.V. Stepanyan – Dr.Sc. (Biol.), Ph.D. (Eng.), Laboratory of biomechanic systems of Institute of Machine Science named after A.A. Blagonravov of the Russian Academy of Sciences, Research Institute of Occupational Health named after N.F. Izmerov of the Russian Academy of Sciences, Moscow State Сonservatory named after P.I. Chaikovsky

E-mail: neurocomp.pro@gmail.com

Abstract:

An approach to the construction of a neuron-like network based on the biologically inspired method of "autonomous adaptive control" (AAC) [1] is considered. In this paper, we present the results of a study of methods for constructing the model of a neuron and a neuron-like network described in the AAС method, taking into account a number of specific properties.

Pages: 19-25
References
  1. Zhdanov A.A. Avtonomnyj iskusstvennyj intellekt. Izd. 2-e. M.: BINOM. Laboratoriya znanij. 2009. 359 s. (Adaptivnye i intellektual'nye sistemy). 
  2. Kryzhanovskij M.V. Principy nejronopodobnoj realizacii sistem Avtonomnogo Adaptivnogo Upravleniya: Dis. ... kand. fiz.-mat. nauk. M. 2004. 129 c. 
  3. Zhdanov A.A. Application of Pattern Recognition Procedure to the Acquisition and Use of Data in Control // Pattern Recognition and Image Analysis. 1992. V. 2. № 2. Р. 180–194.
  4. Zhdanov A.A. A principle of Pattern Formation and Recognition // Pattern Recognition and Image Analysis. 1992. V. 2. № 3. P. 249–264.
  5. Zhdanov A.A., Ryadovikov A.V. Neuron Models in the Autonomous Adaptive Control Method // Optical Memory and Neural Network, Allerton Press, Inc. 2000. V. 9. № 2. P. 115–132.
  6. Zhdanov A.A. Metod avtonomnogo adaptivnogo upravleniya // Izv. Akademii Nauk. Teoriya i sistemy upravleniya. 1999. № 5. S. 127–134.
  7. Zhdanov A.A., Preobrazhenskij N.B., Holopov YU.A. Stepanyan I.V., Nguen Hyu CHung Apparatnaya realizaciya nejronnoj seti v adaptivnoj sisteme upravleniya // Nejrokomp'yutery: razrabotka, primenenie. 2016. № 6. S. 55–62.
  8. Dileep George, Jeff Hawkins. Towards a Mathematical Theory of Cortical Micro-circuits. October 9, 2009 PLoS Computational Biology, Edited by Karl J. Friston, vol. 5, issue 10, p. e1000532
  9. http://neurox.intellect-labs.com/
  10. Karshenbojm I. Kratkij kurs HDL CHast' 5. Napisanie koda nezavisimogo ot apparatnoj platformy // Komponenty i tekhnologii 2008. № 9.
Date of receipt: 5 июня 2018 г.