V.S. Luferov – Post-graduate Student, National Research University «Moscow Power Engineering Institute»
E-mail: lyferov@yandex.ru
The formulation and solution of the problem of forecasting multidimensional time series based on fuzzy cognitive models
(FCM), allowing to take into account both direct and indirect influence of indicators on each other is considered. A new type of FCM is proposed that provides, in conditions of uncertainty, firstly the parametric adjustment of the models of aggregation of the effects of indicators and the weights of the influence of these models, secondly, the adjustment of fuzzy influence relations between FCM concepts; third, the structural adjustment of the model due to a change and the possibility of establishing different «depth of retrospect» for each input and output fuzzy indicators of FCM – one-dimensional time series.
- Avdeeva Z.K., Makarenko D.I., Maksimov V.I. Kognitivnye tekhnologii podderzhki prinyatiya reshenij pri strategicheskom upravlenii situaciyami // Informacionnye tekhnologii. 2006. S. 74–79.
- Behnn D.V., Farmer E.D. Sravnitel'nye modeli prognozirovaniya ehlektricheskoj nagruzki: Per. s angl. M.: EHnergoatomizdat. 1987. 200 c.
- CHetyrkin E.M. Statisticheskie metody prognozirovaniya. M.: Statistika. 1977. 200 s.
- Borisov V.V., Kruglov V.V., Fedulov A.S. Nechetkie modeli i seti. Izd. 2-e, stereotip. M.: Goryachaya liniya – Telekom. 2012. 284 s.
- Stach W., Kurgan L., Pedrycz W., Reformat M. Genetic learning of fuzzy cognitive maps // Fuzzy Sets and Systems. 2005. V. 153. № 3. P. 371–401.
- Juszczuk P., Proelich W. Learning fuzzy cognitive maps using a differential evolution algorithm // Pol. J. Environ. Stud. 2009. V. 12. № 3B. P. 108–112.
- Song H., Miao C., Shen Z., Roel W., Maja D., Francky C. Design of fuzzy cognitive maps using neural networks for predicting chaotic time series // Neural Networks. 2010. V. 23. № 10. P. 1264–1275.
- Papageorgiou E. Learning algorithms of Fuzzy Cognitive Maps – A review study // IEEE Trans. Sys. Man. Cybern., part C. 2012. V. 42. № 2. P. 150–163.
- Averkin A.N., Yarushev S.A. Hybrid approach for time series forecasting based on ANFIS and Fuzzy Cognitive Maps // In Proc. of 20th IEEE International Conference on Soft Computing and Measurements (SCM). 2017. IEEE. 2017. P. 379–381.
- Jang J.-S.R. ANFIS: Adaptive Network-based Fuzzy Inference System // IEEE Trans. On Systems, Man and Cybernetics. 1993. V. 23. № 3. P. 665–685.
- Borisov V.V., Fedulov A.S., Zernov M.M. Osnovy gibridizacii nechetkih modelej. Ser. «Osnovy nechetkoj matematiki». Kniga 9: Uchebnoe posobie dlya vuzov. M.: Goryachaya liniya–Telekom. 2017. 100 s.