350 rub
Journal Neurocomputers №1 for 2017 г.
Article in number:
Neurodinamic systems of multiagent modeling on the basis of the modern of catastrophe theory
Authors:
Yu. I. Nechaev - Dr.Sc. (Eng.), Professor, Honored Scientist of RF, Academician of RANS, Leading Research Scientist, the main scientific employee of scientific research Institute of the high technology computer technologies of the St.-Petersburg National Research University Information Technologies, Mechanics and Optics. International expert in the field of high-performance computing and intelligence systems.
Abstract:
The problem of multiagent modeling on a basis neural-dynamic systems (ND-systems) is considered. Functioning of systems is carried out in the conditions of uncertainty at the analysis and the forecast of extreme situations. Interpretation of dynamics of interaction is based on use of achievements of the modern of catastrophe theory in the multiprocessor computing environment. Synthesis of multiagent managements is carried out in frameworks нейродинамической systems (ND-systems). Realization of management and interpretation of processes of interaction is conducted with the help neural-fuzzy and neural-evolution modeling. The system concept multiagent modeling allows to realize information processing in a mode of real time. The formal model of topological dynamics multiagent modeling provides use of fractal geometry and entropy the approach. Multiagent modeling is considered with reference to sea dynamic objects (DO) at various level of external indignations. The structure multiagent modeling within the limits of a paradigm of emergency calculations, and also extreme situations is considered at an estimation of behavior of a vessel on waves. The basic attention is given to the analysis multiagent modeling at realization of the active dynamic systems functioning on a basis og ND-system in the conditions of uncertainty and incompleteness of the initial information. Problems of modeling of behavior and training are considered with reference to dynamics interpretation multiagent systems. The practical application of the developed concept is discussed with reference to problems of interpretation of interaction of investigated non-stationary object with an environment in the DO of system evolution. The dynamic model of accidents defines system movement to target attractor and stability loss.
Pages: 16-29
References

 

  1. Bukhanovskijj A.V., Balakhonceva M.A. Multiagentnoe modelirovanie processa ehvakuacii passazhirov avarijjnogo sudna v shtormovykh uslovijakh // Izv. vuzov. Priborostroenie. 2015. № 8. S. 614-620.
  2. Knjazkov K.V., Kovalchuk S.V., Bukhanovskijj A.V. Interaktivnye kompozitnye prilozhenija: tekhnologija dlja razrabotki informacionno-izmeritelnykh i upravljajushhikh sistem v raspredelennykh sredakh // Informacionno-izmeritelnye i upravljajushhie sistemy. 2012. № 11. S. 40-46.
  3. Kolmogorov A.N. Teorija informacii i teorija algoritmov. M.: Nauka. 1987.
  4. Krasovskijj A.A. Koncepcija optimalnogo instruktora i avtomatizacija obuchenija na trenazherakh // Izv. AN SSSR. Ser. Tekhnicheskaja kibernetika. 1989. № 6. S. 139-144.
  5. Modelirovanie obuchenija i povedenija. M.: Nauka. 1875.
  6. Moiseev N.N. Izbrannye trudy. M.: Tajjreks Ko. 2003.
  7. Nechaev JU.I., Ljutin A.V. Multiagentnye tekhnologii v slozhnykh adaptivnykh sistemakh iskusstvennogo intellekta // Sb. dokl. KHIV Mezhdunar. konf. po mjagkim vychislenijam i izmerenijam SCM-2011. SPb. 2011. T. 2. S. 64-68.
  8. Nechaev JU.I. Teorija katastrof: sovremennyjj podkhod pri prinjatii reshenijj. SPb.: Art-EHkspress. 2011.
  9. Nechaev JU.I. Konceptualnye osnovy realizacii nejjronechetkikh sistem pri issledovanii ehkstremalnykh situacijj metodami teorii katastrof v srede «oblachnojj» modeli // Nejjrokompjutery: razrabotka, primenenie. 2012. № 11. S. 3-13.
  10. Nechaev JU.I. Nejjronechetkaja sistema upravlenija vysokoprizvoditelnymi vychislenijami pri Interpretacii dinamiki slozhnogo obekta na osnove teorii katastrof v srede «oblachnojj» modeli // Nejjrokompjutery: razrabotka, primenenie. 2012. № 11. S. 14-22.
  11. Nechaev JU.I. Topologija nelinejjnykh nestacionarnykh sistem: teorija i prilozhenija. SPb.: Art-EHkspress. 2015.
  12. Nikolis Dzh. Dinamika ierarkhicheskikh sistem: ehvoljucionnoe predstavlenie. M.: Mir. 1989.
  13. Novikov D.A., Petrakov S.N. Kurs teorii aktivnykh sistem. M.: SINEG. 1999.
  14. Rastrigin L.A. Metody adaptacii slozhnykh sistem. Riga: Zinatie. 1981.
  15. Solodovnikov V.V., Tumarkin V.I. Teorija slozhnosti i proektirovanie sistem upravlenija. M.: Nauka. 1990.
  16. Caregorodcev A.V., Mukhin I.N. Sintez razvivajushhikhsja informacionno-upravljajushhikh sistem // Avtomatizacija i sovremennye tekhnologii. 2005. № 3. S. 22-26.
  17. GTSI Cloud Computing Maturity Model [ehlektronnyjj resurs] http://www.gtsi.com/sms/documents/White-Papers/Cloud Compuing.pdf
  18. Judd K., Mees A. On Selecting Models for Nonlinear Time Series // Physica D. 1995. № 82. R. 426-444.
  19. Klügl F. A validation methodology for agent-based simulations // Proceedings of the 2008 ACM symposium on Applied computing. ACM. 2008. S. 39-43.
  20. Panait L., Luke S. Cooperative multi-agent learning: the state of the art // Autonomous agents and multi-agent systems. 2005. V. 11. № 3. R. 387-434.
  21. Urgent Computing Workshop 2007. Argonne National Lab, University of Chicago, April 25-26, 2007. [EHlektronnyjj resurs]: .
  22. Wasserman S., Faust K. Social Network Analysis. Cambridge: Cambridge University Press, 1994.