350 rub
Journal Neurocomputers №7 for 2016 г.
Article in number:
Basic concepts for situational-event calculus with many outcomes and simultaneous actions
Authors:
M.M. Zernov - Ph.D. (Eng.), Associate Professor, Department of Computer Engineering, Branch of National Research University «Moscow Power Engineering Institute» in Smolensk. E-mail: zmmioml@yandex.ru
Abstract:
Situation management issues are under scope for many industrial, financial, social domains. Special models, representing sit-uational knowledge for prediction and planning tasks, are developed. Special models are good enough for their main purposes, but their logical programming implementations don-t utilize all advances of formal logical approach as flexible queries and knowledge validation. Formal theories for situations (situational and event calculus) can-t emphasize all special models abilities, such as taking simultaneous actions and actions with many outcomes into account. Basing on nearest prototypes, some foundational concepts for new Situational-Event Calculus with Many Outcomes and Si-multaneous Actions (SECMOSA) are proposed. They exploit McCarthy-s approach to actions as external events. But ability of ac-tions/events list implementation is postulated. Another feature is that branching time is available by using special predicate, denoting situation successors as in Mueller-s Branching Discrete Event Calculus (BDEC). For taking into account stochastic action effects, new concept - action outcome variant - is proposed. Every variant and every situation should accompany with its possibility estimate. Events are considered about world objects and their effects are tended to be context-dependent. Though entire SECMOSA formalism is out of scope in this paper, it will be given in following publications as many sorted 1st order theory.
Pages: 29-33
References

 

  1. Kriger L.S. Nechetkaja situacionnaja set dlja upravlenija dvizheniem obshhestvennogo transporta // Vestnik Astrakhanskogo gosudarstvennogo tekhnicheskogo universiteta. Ser. «Upravlenie, vychislitelnaja tekhnika i informatika». 2013. № 1. S. 53-58.
  2. Astanin S.V., ZHukovskaja N.K. Upravlenie biznes-processami na osnove ikh modelirovanija nechetkimi situacionnymi setjami // Upravlenie bolshimi sistemami: sbornik trudov. 2012. № 37. S. 145-163.
  3. Melikhov A.N., Bershtejjn L.S., Korovin S.JA.Situacionnye sovetujushhie sistemy s nechetkojj logikojj. M.: Nauka. 1990. 272 s.
  4. Fedunov B.E. Bortovye operativno-sovetujushhie ehkspertnye sistemy tipovykh situacijj i semanticheskijj oblik ikh baz znanijj // Izv. JUFU. Tekhnicheskie nauki. 2003. № 2 (31). S. 5-12.
  5. Borisov V.V. Zernov M.M. Realizacija nechetkogo situacionnogo podkhoda na osnove nechetkojj ierarkhicheskojj situacionno-sobytijjnojj seti // Iskusstvennyjj intellekt i prinjatie reshenijj. 2009. № 1. S. 17-30.
  6. Zakharov A.S. Metod priblizhennykh rassuzhdenijj na osnove temporalnykh nechetkikh bajjesovskikh setejj doverija // Izv. Smolenskogo gosudarstvennogo universiteta. 2015. №3. S.233-246.
  7. Borisov V.V., Bojarinov JU.G., Dli M.I., Mishhenko V.I. Metody analiza slozhnykh sistem na osnove nechetkikh polumarkovskikh modelejj // Nejjrokompjutery: razrabotka, primenenie. 2011. № 8. S. 33-41.
  8. ZernovM.M.Modelnechetkogoscenarijarazvitijavremennogorjada //Trudy XIV nacionalnojjkonferenciipoiskusstvennomuintellektusmezhdunarodnymuchastiem (KII-2014). 2014. T. 3. S. 13-21.
  9. Lin F. Chapter: Situation calculus / In «Handbook of Knowledge Representation»/ Edited by Lifschitz V., van Harmelen F. and Porter F. Elsevier. 2007. 356 p.
  10. McCarthy J. Actions and other events in situation calculus// In Proceedings of the Eighth International Conference on Principles of Knowledge Representation and Reasoning (KR2002). 2002. P. 615-628.
  11. Patkos T., Plexousakis D. Reasoning with knowledge, action and time in dynamic and uncertain domains// In Proc. 21st Int. J. Conf. on Artificial Intelligence (IJCAI-09). 2009). P. 885-890.
  12. Miller R., Morgenstern L., Patkos T. Reasoning about knowledge and action in an epistemic event calculus// In Proc. 11th Int. Symposium on Logical Formalizations of Commonsense Reasoning, Commonsense 2013. P. 465-469.
  13. Mueller E. Commonsense Reasoning. Morgan Kaufmann. 2006. 420 p.
  14. Mueller E. Discrete Event Calculus with Branching Time// In Proc. 8th Int. Symposium on Logical Formalizations of Commonsense Reasoning. 2007. P. 126-131.
  15. Shanahan M. The ramification problem in the event calculus// In Proc. IJCAI-1999. 1999. P.140-146.
  16. Gu Y., Soutchanski M. Order-Sorted Reasoning in the Situation Calculus//In Proc. Commonsense-2009, the Ninth International Symposium on Logical Formalization on Commonsense Reasoning. Toronto, Canada. 2009. P. 122-128.
  17. Herzig A., Lang J., Marquis P. Action representation and partially observable planning in epistemic logic// In Proc. of IJCAI-2003. 2003. P. 1067-1072.
  18. Bird R.S. An introduction to the theory of lists. In Logic of Programming and Calculi of Discrete Design. SpringerNewYork, 1987. 320 p.